Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology
CHEN Ju-Hua1,2,3**, ZHOU Sheng1,2, WANG Yong-Jiu1,2
1College of Physics and Information Science, Hunan Normal University, Changsha 410081 2Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081 3Department of Physics & Astronomy, University of Missouri, Columbia, MO 65211, USA
Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology
CHEN Ju-Hua1,2,3**, ZHOU Sheng1,2, WANG Yong-Jiu1,2
1College of Physics and Information Science, Hunan Normal University, Changsha 410081 2Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081 3Department of Physics & Astronomy, University of Missouri, Columbia, MO 65211, USA
摘要We investigate the evolution of the viscous dark energy (DE) interacting with the dark matter (DM) in the Einstein cosmology model. By using the linearizing theory of the dynamical system, we find that, in our model, there exists a stable late time scaling solution which corresponds to the accelerating universe. We also find the unstable solution under some appropriate parameters. In order to alleviate the coincidence problem, some authors considered the effect of quantum correction due to the conform anomaly and the interacting dark energy with the dark matter. However, if we take into account the bulk viscosity of the cosmic fluid, the coincidence problem will be softened just like the interacting dark energy cosmology model. That is to say, both the non-perfect fluid model and the interacting the dark energy cosmic model can alleviate or soften the singularity of the universe.
Abstract:We investigate the evolution of the viscous dark energy (DE) interacting with the dark matter (DM) in the Einstein cosmology model. By using the linearizing theory of the dynamical system, we find that, in our model, there exists a stable late time scaling solution which corresponds to the accelerating universe. We also find the unstable solution under some appropriate parameters. In order to alleviate the coincidence problem, some authors considered the effect of quantum correction due to the conform anomaly and the interacting dark energy with the dark matter. However, if we take into account the bulk viscosity of the cosmic fluid, the coincidence problem will be softened just like the interacting dark energy cosmology model. That is to say, both the non-perfect fluid model and the interacting the dark energy cosmic model can alleviate or soften the singularity of the universe.
(Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))
CHEN Ju-Hua;**;ZHOU Sheng;WANG Yong-Jiu;
. Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology[J]. 中国物理快报, 2011, 28(2): 29801-029801.
CHEN Ju-Hua, **, ZHOU Sheng, WANG Yong-Jiu,
. Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology. Chin. Phys. Lett., 2011, 28(2): 29801-029801.
[1] Bennett C L 2003 Astrophys. J. Suppl. 148 1
[2] Bennett C L 1997 Astrophys. J. 483 565
[3] Padmanabham T 2003 Phys. Rep. 380 235
[4] Li M 2004 Phys. Lett. B 603 1
[5] Huang Q G and Gong Y G 2004 J. Cosmol. Astropart. Phys. 0408 006
[6] Huang Q G and Li M 2004 J. Cosmol. Astropart. Phys. 0408 013
[7] Caldwell R R, Kamionkowski M and Weinberg N N 2003 Phys. Rev. Lett. 91 071301
[8] Chimento L P and Lazkoz R 2003 Phy. Rev. Lett. 91 211301
[9] Vikman A 2005 Phys. Rev. D 71 023515
[10] Mauricio C, Norman C and Samuel L 2005 Phys. Lett. B 619 5
[11] Capozziello S 2006 Class. Quantum Grav. 23 1205
[12] Zhang Y and Gui Y X 2006 Class. Quantum Grav. 23 6141
[13] Chiba T 2000 Phys. Rev. D 62 023511
[14] Scherrer R J 2004 Phy. Rev. Lett. 93 011301
[15] Wei H 2005 Class. Quantum Grav. 22 3189
[16] Zhao G B 2005 Phys. Rev. D 72 123515
[17] McInnes B 2002 J. High Energy Phys. 0208 029
[18] Barrow J D 2004 Class. Quantum Grav. 21 L79
[19] Brevik I and Odintsov S D 1999 Phys. Lett. B 455 104
[20] Nojiri S and Odintsov S D 2003 Phys. Lett. B 562 147
[21] Misner C W 1968 Astrophys. J. 151 431
[22] Padmanabhan T and Chitre S M 1987 Phys. Lett. A 120 433
[23] Brevik I and Hallanger 2004 Phys. Rev. D 69 024009
[24] Ren J and Meng X H 2006 Phys. Lett. B 633 1
[25] Koivisto T and David F M 2006 Phys. Rev. D 73 083502
[26] Eckart C 1940 Phys. Rev. 58 919
[27] Belinsky A and Khalatnikov I M 1977 Sov. Phys. JETP 45 1
[28] Sun C B, Wang J L and Li X Z arXiv:0903.3087 [qr-gc]
[29] Feng C J and Li X Z 2009 Phys. Lett. B 680 355
[30] Copeland E J, Sami M and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 1753
[31] Wu P X and Zhang S N 2008 J. Cosmol. Astropart. Phys. 06 007
[32] Fu X Y, Yu H W and Wu P X 2008 Phys. Rev. D 78 063001
[33] Chen S B and Jing J L 2009 Class. Quantum Grav. 26 155006
[34] Bi X J, Feng B, Li H and Zhang X M 2005 Phys. Rev. D 72 123523
[35] Chen X M, Gong Y G and Saridakis E N 2009 J. Cosmol. Astropart. Phys. 0904 001
[36] He J H and Wang B 2008 J. Cosmol. Astropart. Phys. 0806 010
[37] Wang B, Zang J D, Lin C Y, Abdalla E and Micheletti S 2007 Nucl. Phys. B 778 69
[38] Olivares G, Atrio B and F andPavon D 2008 Phys. Rev. D 77 063513