摘要We study the non existence of shear in locally rotationally symmetric Bianchi type-III string cosmological models with bulk viscosity and variable cosmological term Λ. Exact solutions of the field equations are obtained by assuming the conditions: the bulk viscosity is proportional to the expansion scalar, ξ∝θ, expansion scalar is proportional to shear scalar, θ∝σ, and Λ is proportional to the Hubble parameter. The coefficient of bulk viscosity is assumed to be a power function of mass density. The corresponding physical interpretations of the cosmological solutions are also discussed.
Abstract:We study the non existence of shear in locally rotationally symmetric Bianchi type-III string cosmological models with bulk viscosity and variable cosmological term Λ. Exact solutions of the field equations are obtained by assuming the conditions: the bulk viscosity is proportional to the expansion scalar, ξ∝θ, expansion scalar is proportional to shear scalar, θ∝σ, and Λ is proportional to the Hubble parameter. The coefficient of bulk viscosity is assumed to be a power function of mass density. The corresponding physical interpretations of the cosmological solutions are also discussed.
(Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))
引用本文:
R. K. Tiwari, Sonia Sharma. Non Existence of Shear in Bianchi Type-III String Cosmological Models with Bulk Viscosity and Time−Dependent Λ Term[J]. 中国物理快报, 2011, 28(2): 20401-020401.
R. K. Tiwari, Sonia Sharma. Non Existence of Shear in Bianchi Type-III String Cosmological Models with Bulk Viscosity and Time−Dependent Λ Term. Chin. Phys. Lett., 2011, 28(2): 20401-020401.
[1] Ng Y J 1992 Int. J. Mod. Phys. D 1 145
[2] Weinberg S 1989 Rev. Mod. Phys. 61 1
[3] Zeldovich Ya B 1968 Sov. Phys. Usp. 11 381
[4] Linde A D 1974 ZETP. Lett. 19 183
[5] Krauss L M and Turner M S 1995 Gen. Rel. Grav. 27 1137
[6] Reiss A G et al 2004 ApJ 607 665
[7] Vilenkin A 1985 Phys. Rep. 121 263
[8] Zeldovich Ya B 1980 Mon. Nat. R. Astron. Soc. 192 663
[9] Letelier P S 1983 Phys. Rev. D 28 2414
[10] Stachel J 1980 Phys. Rev. D 21 2171
[11] Krori K D, Goswami A K and Purkayastha A D 1995 J. Math. Phys. 36 1347
[12] Wang X X 2003 Chin. Phys. Lett. 20 615
[13] Wang X X 2004 Chin. Phys. Lett. 21 1205
[14] Wang X X 2005 Chin. Phys. Lett. 22 29
[15] Wang X X 2006 Chin. Phys. Lett. 23 1702
[16] Tikekar R and Patel L K 1992 Gen. Relativ. Gravit. 24 394
[17] Chakraborty N C and Chakraborty S 2001 Int. J. Mod. Phys. D 10 723
[18] Singh J P, Tiwari R K and Pratibha S 2007 Chin. Phys. Lett. 24 3325
[19] Schutzhold R 2002 Phys. Rev. Lett. 89 081302
[20] Schutzhold R 2002 Int. J. of Mod. Phy. A 17 4359
[21] Beesham A et al 2000 Gen. Relat. Gravit. 32 471
[22] Mac Callum M A H 1971 Commun. Math. Phys. 20 57
[23] Tiwari R K and Dwivedi U K 2009 Fizika (Zagreb) B 18 3
[24] Bali R and Pradhan A 2007 Chin. Phys. Lett. 24 585
[25] Arbab A I 1997 Gen. Relat. Gravit. 29 61