Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory
HUANG Zeng-Guang1**, FANG Wei2, 3, LU Hui-Qing3,4
1School of Science, Huaihai Institute of Technology, Lianyungang 222005 2Department of Physics, Shanghai Normal University, Shanghai 200234 3The Shanghai Key Lab of Astrophysics, Shanghai 200234 4Department of Physics, Shanghai University, Shanghai 200444
Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory
HUANG Zeng-Guang1**, FANG Wei2, 3, LU Hui-Qing3,4
1School of Science, Huaihai Institute of Technology, Lianyungang 222005 2Department of Physics, Shanghai Normal University, Shanghai 200234 3The Shanghai Key Lab of Astrophysics, Shanghai 200234 4Department of Physics, Shanghai University, Shanghai 200444
摘要We discuss Bianchi type-VII0 cosmology with a Dirac field in the Einstein–Cartan (E−C) theory and obtain the equations of the Dirac and gravitational fields in the E-C theory. A Bianchi type-VII0 inflationary solution is found. When 3S2/16−σ2 > 0, the Universe may avoid singularity.
Abstract:We discuss Bianchi type-VII0 cosmology with a Dirac field in the Einstein–Cartan (E−C) theory and obtain the equations of the Dirac and gravitational fields in the E-C theory. A Bianchi type-VII0 inflationary solution is found. When 3S2/16−σ2 > 0, the Universe may avoid singularity.
(Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))
HUANG Zeng-Guang**;FANG Wei;;LU Hui-Qing;
. Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. 中国物理快报, 2011, 28(8): 89801-089801.
HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing,
. Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory. Chin. Phys. Lett., 2011, 28(8): 89801-089801.
[1] Lu H Q, Harko T and Mak M K 2001 Int. J. Mod. Phys. D 10 315
[2] Kong K H, Cheung P C H, Lu H Q and Cheng K S 1999 Astrophys. Space. Sci. 260 521
[3] Lu H Q and Cheng K S 1995 Class. Quantum Grav. 12 2755
[4] Tsampartis M 1979 Phys. Lett. A 75 27
[5] Obukhov Y N and Korotky V A 1987 Class. Quantum Grav. 4 1633
[6] Ponomariev V N, Barvinsky A O and Obukhov Y N 1985 Geometrodynamical Methods and Gauge Approach in the Theory of Gravity (Moscow: Atomenergy Press) p 59 (in Russian)
[7] Cartan E 1986 On Mainifolds with Affine Connections and General Relativity (Napoli: Humanities Press)
[8] Hehl F W, Vonder H P, Kerlick G D and Nester J M 1976 Rev. Mod. Phys. 48 398
[9] Tratman A 1973 Nature 244 7
[10] Demianski M, Ritis R de, Platania G and Scudellaro P S and Stornaiolo C 1987 Phys. Rev. D 35 1181
[11] Kreqiot V G, Lapqinski V G and Ponomariov V N 1976 Questions of Gravitation Theory and Fundamental Particle (Moscow: Atomenergy Press) p 145 (in Russian)
[12] Lin C C 1996 Proceedings of the 21st Century Chinese Astronomy Conference (Hong Kong 1–4 August 1996) p 475
[13] Brechet S D, Hobson M P and Lasenby A N 2007 Class. Quantum Grav. 24 6329
[14] Brechet S D, Hobson M P and Lasenby A N 2008 Class. Quantum Grav. 25 245016
[15] Barrow J 1977 Mon. Not. R. Astron. Soc. 178 625
[16] Binney J and Tremaine S 1987 Galactic Dynamics (Princeton: Princeton University Press)