摘要Bi0.5(Na0.72K0.28-xLix)0.5TiO3 (BNKLT-100x) lead-free piezoelectric ceramics are synthesized by conventional solid state sintering techniques. The dielectric and piezoelectric properties of the BNKLT-100x ceramics as a function of Li content are systematically investigated. It is found that not only Li content but also the sintering temperature has a strong effect on the piezoelectric properties of BNKLT. The piezoelectric constant d33 of BNKLT varies from 120 to 252pC/N in the Li content range from 0.03 to 0.16. In the sintering temperature range from 1080 to 1130°C, the d33 value of BNKLT-6 changes from 200pC/N to 252pC/N. The BNKLT-6 sample sintered at 1100°C has the highest piezoelectric constant d33 of 252pC/N, with the electromechanical coupling factors kp of 0.32 and kt of 0.44.
Abstract:Bi0.5(Na0.72K0.28-xLix)0.5TiO3 (BNKLT-100x) lead-free piezoelectric ceramics are synthesized by conventional solid state sintering techniques. The dielectric and piezoelectric properties of the BNKLT-100x ceramics as a function of Li content are systematically investigated. It is found that not only Li content but also the sintering temperature has a strong effect on the piezoelectric properties of BNKLT. The piezoelectric constant d33 of BNKLT varies from 120 to 252pC/N in the Li content range from 0.03 to 0.16. In the sintering temperature range from 1080 to 1130°C, the d33 value of BNKLT-6 changes from 200pC/N to 252pC/N. The BNKLT-6 sample sintered at 1100°C has the highest piezoelectric constant d33 of 252pC/N, with the electromechanical coupling factors kp of 0.32 and kt of 0.44.
MING Bao-Quan;WANG Jin-Feng;ZANG Guo-Zhong. Effects of Li Substitution and Sintering Temperature on Properties of Bi0.5(Na,K)0.5TiO3 Lead-Free Piezoelectric Ceramics[J]. 中国物理快报, 2008, 25(10): 3776-3778.
MING Bao-Quan, WANG Jin-Feng, ZANG Guo-Zhong. Effects of Li Substitution and Sintering Temperature on Properties of Bi0.5(Na,K)0.5TiO3 Lead-Free Piezoelectric Ceramics. Chin. Phys. Lett., 2008, 25(10): 3776-3778.
[1] Takenaka T et al 2005 J. Eur. Ceram. Soc. 252693 [2] Smolenskii G A et al 1961 Physics Solid State (Sov.) 2 2651 [3] Sasaki A et al 1999 Jpn. J. Appl. Phys. 385564 [4] Herabut A and Safari A 1997 J. Am. Ceram. Soc. 80 2954 [5] Nagata H et al 1999 Key Eng. Mater. 169-170 37 [6] Takenaka T et al 1997 Ferroelectrics 196 175 [7] Nagata H et al 1999 Ferroelectrics 229 273 [8] Wu Y G et al 2003 J. Mater. Sci. Lett. 38 987 [9] Wang X et al 2003 Solid State Commun. 125 395 [10] Chu B J et al 2002 J. Eur. Ceram. Soc. 222115 [11] Lin D et al 2006 Appl. Phys. Lett. 88 062901 [12] Lin D et al 2004 Mater. Lett. 58 615 [13] Elkechai O et al 1996 Phys. Status Solidi A 157 499 [14] Li Y et al 2005 Ceram. Int. 31 139 [15] Wang X X et al 2004 Appl. Phys. Lett. 85 91 [16] Takahashi S 1982 Ferroelectrics 41 143 [17] Cross L E 1994 Ferroelectrics 151 305 [18] Yao X et al 1983 J. Appl. Phys. 54 3399