Thickness Effect on (La$_{0.26}$Bi$_{0.74}$)$_{2}$Ti$_{4}$O$_{11}$ Thin-Film Composition and Electrical Properties
Hui-Zhen Guo, An-Quan Jiang**
State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai 200433
Abstract :Highly oriented (00l) (La$_{0.26}$Bi$_{0.74}$)$_{2}$Ti$_{4}$O$_{11}$ thin films are deposited on (100) SrTiO$_{3}$ substrates using the pulsed laser deposition technique. The grains form a texture of bar-like arrays along SrTiO$_{3}$ $\langle 110\rangle$ directions for the film thickness above 350 nm, in contrast to spherical grains for the reduced film thickness below 220 nm. X-ray diffraction patterns show that the highly ordered bar-like grains are the ensemble of two lattice-matched monoclinic (La,Bi)$_{4}$Ti$_{3}$O$_{12}$ and TiO$_{2}$ components above a critical film thickness. Otherwise, the phase decomposes into the random mixture of Bi$_{2}$Ti$_{2}$O$_{7}$ and Bi$_{4}$Ti$_{3}$O$_{4}$ spherical grains in thinner films. The critical thickness can increase up to 440 nm as the films are deposited on LaNiO$_{3}$-buffered SrTiO$_{3}$ substrates. The electrical measurements show the dielectric enhancement of the multi-components, and comprehensive charge injection into interfacial traps between (La,Bi)$_{4}$Ti$_{3}$O$_{12}$ and TiO$_{2}$ components occurs under the application of a threshold voltage for the realization of high-charge storage.
收稿日期: 2017-10-25
出版日期: 2018-01-23
:
68.65.-k
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
77.80.-e
(Ferroelectricity and antiferroelectricity)
77.84.-s
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
67.80.dm
(Films)
[1] Subbarao E C 1962 J. Am. Ceram. Soc. 45 564 [2] Kahlenberg V and Bohm H 1994 J. Phys.: Condens. Matter 6 6221 [3] Kahlenberg V and Bohm H 1995 Acta Crystallogr. Sect. B 51 11 [4] Buscaglia M T, Sennour M, Buscaglia V, Bottino C, Kalyani V and Nanni P 2011 Cryst. Growth Des. 11 1394 [5] Jiang A Q, Cheng Z H, Cheng F, Zhou Y L, He M and Yang G Z 2001 Phys. Rev. B 63 104102 [6] Jiang A Q, Hu Z X and Zhang L D 1999 J. Appl. Phys. 85 1739 [7] Liu J, Duan C G, Yin W G, Mei W N, Smith R W and Hardy J R 2003 J. Chem. Phys. 119 2812 [8] Meng J F, Katiyar R S and Zou G T 1997 J. Raman Spectrosc. 28 797 [9] Jiang A Q, Hu Z X and Zhang L D 1999 Appl. Phys. Lett. 74 114 [10] Black C T and Welser J J 1999 IEEE Trans. Electron Devices 46 776 [11] Hardy A, D'Haen J, Goux L, Dirk, Marlies, Rul H V and Mullens J 2007 Chem. Mater. 19 2994 [12] Lee B T and Hwang C S 2000 Appl. Phys. Lett. 77 124 [13] Vendik O G, Zubko S P and Ter-Martirosayn L T 1998 Appl. Phys. Lett. 73 37 [14] Pertsev N A, Zembilgotov A G and Tagantsev A K 1998 Phys. Rev. Lett. 80 1988 [15] Park B H, Kang B S, Bu S D, Noh T W, Lee J and Jo W 1999 Nature 401 682 [16] Yang X N, Huang B B, Wang H B, Shang S H, Yao W F and Wei J Y 2004 J. Cryst. Growth 270 98 [17] Mizutani Y, Kiguchi T, Konno T J, Funakubo H and Uchida H 2010 Jpn. J. Appl. Phys. 49 09MA02 [18] Chu C M and Lin P 1997 Appl. Phys. Lett. 70 249 [19] Nakamura T, Muhammet R, Shimizu M and Shiosaki T 1993 Jpn. J. Appl. Phys. Part. 32 4086 [20] Merka O, Bahnemann D W and Wark M 2014 Catal. Today 225 102 [21] Borghols W J H, Wagemaker M, Lafont U, Kelder E M and Mulder F M 2008 Chem. Mater. 20 2949 [22] Lardhi S, Noureldine D, Harb M, Ziani A, Cavallo L and Takanabe K 2016 J. Chem. Phys. 144 134702 [23] Theis C D, Yeh J, Schlom D G, Hawley M E, Brown G W, Jiang J C and Pan X Q 1998 Appl. Phys. Lett. 72 2817 [24] Shin H, De Guire M R and Heuer A H 1998 J. Appl. Phys. 83 3311 [25] Ha H K, Yoshimoto M, Koinuma H, Moon B K and Ishiwara H 1996 Appl. Phys. Lett. 68 2965 [26] Shimada S, Kodaira K and Matsushita T 1977 J. Cryst. Growth 41 317 [27] Dobal P S and Katiyar R S 2002 J. Raman Spectrosc. 33 405 [28] Idink H, Srikanth V, White W B and Subbarao E C 1994 J. Appl. Phys. 76 1819 [29] Wu Y, Zhang D, Yu J and Wang Y 2009 Mater. Chem. Phys. 113 422 [30] Marchand R, Brohan L and Tournoux M 1980 Mater. Res. Bull. 15 1129 [31] Shen M R, Ge S B and Cao W W 2001 J. Phys. D 34 2935 [32] Jiang A Q, Chen Z H, Zhou Y L and Yang G Z 2001 Solid State Commun. 120 65 [33] Csikor F F, Motz C, Weygand D, Zaiser M and Zapperi S 2007 Science 318 251 [34] Fouskova A and Cross L E 1970 J. Appl. Phys. 41 2834
[1]
. [J]. 中国物理快报, 2022, 39(7): 77401-077401.
[2]
. [J]. 中国物理快报, 2022, 39(3): 36101-036101.
[3]
. [J]. 中国物理快报, 2021, 38(6): 66801-.
[4]
. [J]. 中国物理快报, 2021, 38(5): 57301-.
[5]
. [J]. 中国物理快报, 2019, 36(5): 57302-.
[6]
. [J]. 中国物理快报, 2018, 35(9): 96801-.
[7]
. [J]. 中国物理快报, 2018, 35(5): 56803-.
[8]
. [J]. 中国物理快报, 2017, 34(2): 27302-027302.
[9]
. [J]. 中国物理快报, 2016, 33(05): 57301-057301.
[10]
. [J]. 中国物理快报, 2016, 33(03): 30301-030301.
[11]
. [J]. 中国物理快报, 2014, 31(05): 56802-056802.
[12]
. [J]. 中国物理快报, 2014, 31(04): 46801-046801.
[13]
. [J]. 中国物理快报, 2013, 30(5): 56801-056801.
[14]
. [J]. 中国物理快报, 2012, 29(8): 86801-086801.
[15]
WANG Guo-Biao, XIONG Huan, LIN You-Xi, FANG Zhi-Lai, KANG Jun-Yong, DUAN Yu, SHEN Wen-Zhong. Green Emission from a Strain-Modulated InGaN Active Layer [J]. 中国物理快报, 2012, 29(6): 68101-068101.