Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI$_{2}$ Monolayer
Qian Ye1† , Yu-Hao Shen1† , and Chun-Gang Duan1,2*
1 State Key Laboratory of Precision Spectroscopy and Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Electronics, East China Normal University, Shanghai 200241, China2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract :The persistent spin helix (PSH) system is considered to have promising applications in energy-conservation spintronics because it supports an extraordinarily long spin lifetime of carriers. Here, we predict that the existence of PSH state in two-dimensional (2D) ferroelectric NbOI$_{2}$ monolayers. Our first-principles calculation results show that there exists Dresselhaus-type spin-orbit coupling (SOC) band splitting near the conduction-band minimum (CBM) of the NbOI$_{2}$ monolayer. It is revealed that the spin splitting near CBM merely refers to out-of-plane spin configuration in the wave vector space, which gives rise to a long-lived PSH state that can be controlled by reversible ferroelectric polarization. We believe that the coupling characteristics of ferroelectric polarization and spin texture in NbOI$_{2}$ provide a platform for the realization of fully electric controlled spintronic devices.
收稿日期: 2021-04-23
出版日期: 2021-08-02
:
77.80.-e
(Ferroelectricity and antiferroelectricity)
77.84.-s
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
85.75.-d
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
75.70.Tj
(Spin-orbit effects)
[1] Manchon A, Miron I, Jungwirth T, Sinova J, Zelezny J, Thiaville A, Garello K, and Gambardella P 2019 Rev. Mod. Phys. 91 035004
[2] Sinova J, Valenzuela S O, Wunderlich J, Back C H, and Jungwirth T 2015 Rev. Mod. Phys. 87 1213
[3] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[4] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
[5] Xu X, Yao W, Xiao D, and Heinz T F 2014 Nat. Phys. 10 343
[6] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, and Xu X 2016 Nat. Rev. Mater. 1 16055
[7] Tong W Y, Gong S J, Wan X, and Duan C G 2016 Nat. Commun. 7 13612
[8] Hu H, Tong W Y, Shen Y H, and Duan C G 2020 J. Mater. Chem. C 8 8098
[9] Manchon A, Koo H C, Nitta J, Frolov S M, and Duine R A 2015 Nat. Mater. 14 871
[10] Chuang P et al. 2015 Nat. Nanotechnol. 10 35
[11] Katsura H, Nagaosa N, and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
[12] Ganichev S D and Golub L E 2014 Phys. Status Solidi B 251 1801
[13] Dresselhaus G 1955 Phys. Rev. 100 580
[14] Shen Y H, Tong W Y, Hu H, Zheng J D, and Duan C G 2021 Chin. Phys. Lett. 38 037501
[15] Kuhlen S, Schmalbuch K, Hagedorn M, Schlammes P, Patt M, Lepsa M, Guentherodt G, and Beschoten B 2012 Phys. Rev. Lett. 109 146603
[16] Guan Z, Hu H, Shen X, Xiang P, Zhong N, Chu J, and Duan C 2020 Adv. Electron. Mater. 6 1900818
[17] Ye Q, Shen Y, Yuan Y, Zhao Y F, and Duan C G 2020 Acta Phys. Sin. 69 217710 (in Chinese)
[18] Picozzi S 2014 Front. Phys. 2 00010
[19] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[20] Di Sante D, Barone P, Bertacco R, and Picozzi S 2013 Adv. Mater. 25 509
[21] Liebmann M et al. 2016 Adv. Mater. 28 560
[22] Rinaldi C et al. 2018 Nano Lett. 18 2751
[23] da S L G D, Barone P, and Picozzi S 2016 Phys. Rev. B 93 245159
[24] Tao L, Paudel T, Kovalev A, and Tsymbal E 2017 Phys. Rev. B 95 245141
[25] Arras R, Gosteau J, Zhao H J, Paillard C, Yang Y, and Bellaiche L 2019 Phys. Rev. B 100 174415
[26] Wang Y et al. 2018 Mater. Horiz. 5 521
[27] Zhou B 2020 Nanoscale 12 5533
[28] Bel'kov V V et al. 2008 Phys. Rev. Lett. 100 176806
[29] Karimov O Z, John G H, Harley R T, Lau W H, Flatte M E, Henini M, and Airey R 2003 Phys. Rev. Lett. 91 246601
[30] Chen Y, Faelt S, Wegscheider W, and Salis G 2014 Phys. Rev. B 90 121304(R)
[31] Tan H X, Li M L, Liu H T, Liu Z R, Li Y C, and Duan W H 2019 Phys. Rev. B 99 195434
[32] Ding N, Chen J, Dong S, and Stroppa A 2020 Phys. Rev. B 102 165129
[33] Zhang Y, Lin L F, Moreo A, Alvarez G, and Dagotto E 2021 Phys. Rev. B 103 L121114
[34] Bernevig B A, Orenstein J, and Zhang S C 2006 Phys. Rev. Lett. 97 236601
[35] Schliemann J 2017 Rev. Mod. Phys. 89 011001
[36] Altmann P, Walser M, Reichl C, Wegscheider W, and Salis G 2014 Phys. Rev. B 90 201306
[37] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[38] Blöchl P E 1994 Phys. Rev. B 50 17953
[39] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[40] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651
[41] Resta R 1994 Rev. Mod. Phys. 66 899
[42] Togo A, Oba F, and Tanaka I 2008 Phys. Rev. B 78 134106
[43] Krukau A V, Vydrov O A, Izmaylov A F, and Scuseria G E 2006 J. Chem. Phys. 125 224106
[44] Jia Y, Zhao M, Gou G, Zeng X C, and Li J 2019 Nanoscale Horiz. 4 1113
[45] Shen X W, Tong W Y, Gong S J, and Duan C G 2017 2D Mater. 5 011001
[46] Wu M and Zeng X C 2016 Nano Lett. 16 3236
[47] Fei R, Kang W, and Yang L 2016 Phys. Rev. Lett. 117 097601
[48] Wang H and Qian X 2017 2D Mater. 4 015042
[49] Ai H, Ma X, Shao X, Li W, and Zhao M 2019 Phys. Rev. Mater. 3 054407
[50] Anshory M and Absor M A U 2020 Physica E 124 114372
[51] Kim M, Im J, Freeman A J, Ihm J, and Jin H 2014 Proc. Natl. Acad. Sci. USA 111 6900
[1]
. [J]. 中国物理快报, 2023, 40(4): 47303-047303.
[2]
. [J]. 中国物理快报, 2023, 40(3): 38501-.
[3]
. [J]. 中国物理快报, 2022, 39(9): 97701-.
[4]
. [J]. 中国物理快报, 2021, 38(8): 87701-.
[5]
. [J]. 中国物理快报, 2020, 37(11): 118401-.
[6]
. [J]. 中国物理快报, 2018, 35(2): 26801-.
[7]
. [J]. 中国物理快报, 2013, 30(5): 57701-057701.
[8]
LAN Chao-Hui**;PENG Yu-Fei LONG Ji-Dong;WANG Qiang;WANG Wen-Dou
. Modeling of PZT Ferroelectric Ceramic Depolarization Driven by Shock Stress [J]. 中国物理快报, 2011, 28(8): 88301-088301.
[9]
WANG Hong-Tao;ZHOU Tong;HONG Bo;TAO Qian;XU Zhu-An**
. Magnetic Properties of Orthorhombic Perovskite Ho1−x Lax MnO3 [J]. 中国物理快报, 2011, 28(2): 27501-027501.
[10]
HUANG Ning-Xiang;ZHAO Li-Feng;XU Jia-Yang;CHEN Ji-Li;ZHAO Yong;. Effects of Substitution of Sm for Bi in BiFeO3 Thin Films Prepared by the Sol-Gel Method [J]. 中国物理快报, 2010, 27(2): 27704-027704.
[11]
ZHENG Chao-Dan;;ZHANG Duan-Ming;LIU Xin-Ming;YANG Bin;LIU Chao-Jun;YU Jun. Effects of Depolarization Field and Interfacial Coupling on the Polarization of Ferroelectric Bilayers [J]. 中国物理快报, 2010, 27(1): 17702-017702.
[12]
WANG Jing;LI Mei-Ya;LIU Xiao-Lian;PEI Ling;LIU Jun;YU Ben-Fang;ZHAO Xing-Zhong;. Synthesis and Multiferroic Properties of BiFeO3 Nanotubes [J]. 中国物理快报, 2009, 26(11): 117301-117301.
[13]
LI Jian-Jun;YU Jun;LI Jia;YANG Wei-Ming;ZHOU Bin;GAO Jun-Xiong;WANG Yun-Bo. Ferroelectric Properties of Bi3.25 La0.75 Ti3 O12 Thin Films Crystallized inDifferent N2 /O2 Ambients [J]. 中国物理快报, 2009, 26(4): 47702-047702.
[14]
LI Jian-Jun;YU Jun;WU Yun-Yi;LI Jia;WANG Yun-Bo;ZHOU Wen-Li. Effect of Pyrolysis Atmosphere on Ferroelectric Properties of Bi3.25 La0.75 Ti3 O12 Films Prepared by Sol-Gel Method [J]. 中国物理快报, 2009, 26(3): 37702-037702.
[15]
WU Yun-Yi;ZHANG Duan-Ming;YU Jun;ZHENG Chao-Dan;WANG Yun-Bo. Effects of LSMO Buffer Layer on Crystalline Orientation and Ferroelectric Properties of Bi2.9 Pr0.9 Ti3 O12 Thin Films Prepared by Radio-Frequency Magnetron Sputtering [J]. 中国物理快报, 2008, 25(11): 4131-4134.