摘要Room-temperature deposited amorphous silicon nitride (a-SiNx:H) films exhibit intense green light emission after post-treated by plasma oxidation, thermal oxidation and natural oxidation, respectively. All the photoluminescence (PL) spectra are peaked at around 500nm, independent of oxidation method and excitation wavelength. Compared with the PL results from oxidized a-Si:H and as-deposited a-SiNx:H samples, it is indicated that not only oxygen but also nitrogen is of an important role in enhancing light emission from the oxidized a-SiNx:H. Combining the PL results with the analyses of the bonding configurations as well as chemical compositions of the films, the strong green light emission is suggested to be from radiative recombination in luminescent centres related to N--Si--O bonds.
Abstract:Room-temperature deposited amorphous silicon nitride (a-SiNx:H) films exhibit intense green light emission after post-treated by plasma oxidation, thermal oxidation and natural oxidation, respectively. All the photoluminescence (PL) spectra are peaked at around 500nm, independent of oxidation method and excitation wavelength. Compared with the PL results from oxidized a-Si:H and as-deposited a-SiNx:H samples, it is indicated that not only oxygen but also nitrogen is of an important role in enhancing light emission from the oxidized a-SiNx:H. Combining the PL results with the analyses of the bonding configurations as well as chemical compositions of the films, the strong green light emission is suggested to be from radiative recombination in luminescent centres related to N--Si--O bonds.
DONG Heng-Ping;HUANG Rui;WANG Dan-Qing;CHEN Kun-Ji;LI Wei;MAZhong-Yuan;XU Jun;HUANG Xin-Fan. Strong Green Light Emission from Low-Temperature Grown a-SiNx:H Film after Different Oxidation Routes[J]. 中国物理快报, 2008, 25(11): 4147-4150.
DONG Heng-Ping, HUANG Rui, WANG Dan-Qing, CHEN Kun-Ji, LI Wei, MAZhong-Yuan, XU Jun, HUANG Xin-Fan. Strong Green Light Emission from Low-Temperature Grown a-SiNx:H Film after Different Oxidation Routes. Chin. Phys. Lett., 2008, 25(11): 4147-4150.
[1] Canham L T 1990 Appl. Phys. Lett. 57 1046 [2] Chen K J, Huang X F, Xu J and Feng D 1992 Appl. Phys. Lett. 61 2069 [3] Qin G G and Li Y J 2003 Phys. Rev. B 68 085309 [4] Zhang J G, Wang X X, Cheng B W, Yu J Z and Wang Q M 2006 Chin. Phys. Lett. 23 2183 [5] Pavesi L, Negro L D, Mazzoleni C, Franz\`{o G and Priolo F 2000 Nature 408 440 [6] Park N M, Choi C J, Seong T Y and Park S J 2001 Phys. Rev. Lett. 86 1355 [7] Negro L D, Yi J H, Michel J, Kimerling L C, Chang T W F, Sukhovatkin V and Sargent E H 2006 Appl. Phys. Lett. 88 233109 [8] Ma L B, Song R, Miao Y M, Li C R, Wang Y Q and Cao Z X 2006 Appl. Phys. Lett. 88 093102 [9] Huang R, Chen K J, Qian B, Chen San, Li W, Xu J, Ma Z Y and Huang X F 2006 Appl. Phys. Lett. 89 221120 [10] Huang R, Chen K J, Han P G, Dong H P, Wang X, Chen D Y, Li W, Xu J, Ma Z Y and Huang X F 2007 Appl. Phys. Lett. 90 093515 [11] Price K J, McNeil L E, Suvkanov A, Irene E A, MacFarlane P J and Zvanut M E 1999 J. Appl. Phys. 86 2628 [12] Chao S S, Lucovsky G, Lin S Y, Wong C K, Richard P D, Tsu D V, Takagi Y, Keem J E, Tyler J E and Pai P 1985 J. Non-Cryst. Solids 77{\&78 929 [13] Kennedy G P, Buiu O and Taylor S 1999 J. Appl. Phys. 85 3319 [14] Shallenberger J R, Cole D A and Novak S W J. Vac. Sci. Technol. A 1999 17 1086 [15] Naskar S, Wolter S D, Bower C A, Stoner B R and Glass J T 2005 Appl. Phys. Lett. 87 261907