Improvement of Photoluminescence of Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ by Adding Additional CH$_{3}$NH$_{3}$I during Grinding
Dou-Dou Qian1, Lei Liu1, Zhi-Xue Xing2, Rui Dong1, Li Wu1*, Hong-Kun Cai2*, Yong-Fa Kong1, Yi Zhang2, and Jing-Jun Xu1
1Key Laboratory of Weak-Light Nonlinear Photonics (Ministry of Education), School of Physics, Nankai University, Tianjin 300071, China 2College of Electronic Information and Optical Engineering and Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China
Abstract:The organic-inorganic hybrid perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ has been a good candidate for many optoelectronic applications such as light-emitting diodes due to its unique properties. Optimizing the optical properties of the CH$_{3}$NH$_{3}$PbI$_{3}$ material to improve the device performance is a hot topic. Herein, a new strategy is proposed to enhance the light emission of CH$_{3}$NH$_{3}$PbI$_{3}$ phosphor effectively. By adding the reactant CH$_{3}$NH$_{3}$I powder in an appropriate proportion and simply grinding, the emission intensity of CH$_{3}$NH$_{3}$PbI$_{3}$ is greatly improved. The advantages of the proposed method are swiftness, simplicity and reproducibility, and no requirement for a complex organic ligand. The mechanism of this phenomenon is revealed by x-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, photoluminescence, and temperature-dependent photoluminescence. This study offers a unique insight for optimizing the optical properties of halide perovskite materials.
Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, and Friend R H 2014 Nat. Nanotechnol.9 687
[8]
Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, and Wei Z 2018 Nature562 245
[9]
Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, and Huang W 2016 Nat. Photon.10 699
Qin C, Matsushima T, Potscavage W J, Sandanayaka A S D, Leyden M R, Bencheikh F, Goushi K, Mathevet F, Heinrich B, Yumoto G, Kanemitsu Y, and Adachi C 2020 Nat. Photon.14 70
Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, and Stranks S D 2018 Nature555 497
[21]
Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N, Boix P P, Demir H V, and Mhaisalkar S 2015 J. Phys. Chem. Lett.6 4360
[22]
Yong Z J, Guo S Q, Ma J P, Zhang J Y, Li Z Y, Chen Y M, Zhang B B, Zhou Y, Shu J, Gu J L, Zheng L R, Bakr O M, and Sun H T 2018 J. Am. Chem. Soc.140 9942
Shi Z F, Sun X G, Wu D, Xu T T, Zhuang S W, Tian Y T, Li X J, and Du G T 2016 Nanoscale8 10035
[25]
Di D, Musselman K P, Li G, Sadhanala A, Ievskaya Y, Song Q, Tan Z K, Lai M L, MacManus-Driscoll J L, Greenham N C, and Friend R H 2015 J. Phys. Chem. Lett.6 446
[26]
Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H, Friend R H, and Greenham N C 2015 Nano Lett.15 2640
[27]
Richter J M, Abdi-Jalebi M, Sadhanala A, Tabachnyk M, Rivett J P H, Pazos-Outon L M, Godel K C, Price M, Deschler F, and Friend R H 2016 Nat. Commun.7 13941
[28]
Lindblad R, Jena N K, Philippe B, Oscarsson J, Bi D, Lindblad A, Mandal S, Pal B, Sarma D D, Karis O, Siegbahn H, Johansson E M J, Odelius M, and Rensmo H 2015 J. Phys. Chem. C119 1818
[29]
Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, and Lee T W 2015 Science350 1222