Efficient Green Organic Light-Emitting Devices Based on a Solution-Processable Starburst Molecule
ZHANG Xin-Wen1** , WANG Jian-Yun1 , ZHAO Ling-Ling1 , GUO Xin1 , LAI Wen-Yong1** , HUANG Wei1,2
1 Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 2100232 Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816
Abstract :We develop high efficiency solution-processed pure green organic light-emitting devices using a starburst molecule 7,7',7"-(5,5,10,10,15,15-hexahexyl-10, 15-dihydro-5H-diindeno[1, 2-a:1', 2'-c]fluorene-2,7,12-triyl)tris(4-(4-(9H-carbazol-9-yl)phenyl)benzo[c][1,2,5]thiadiazole) (TRcz) doped 2-methyl-9,10-di(2-naphthyl)anthracene (MADN) as the emitting layers. The electroluminescence properties of the devices with different doping concentrations are investigated. With the increasing doping concentration from 0.5wt% to 5wt%, the maximum efficiency changes from 4.8 cd/A to 8.4 cd/A. Under the optimal concentration of 4wt%, the device shows pure green emission at 516 nm with a chromaticity coordinate of (0.30, 0.59) as well as a high brightness of 19900 cd/m2 and a high efficiency of 10.1 cd/A, which are better than 11490 cd/m2 and 4.2 cd/A obtained in the undoped device.
收稿日期: 2013-06-05
出版日期: 2013-11-21
:
85.60.Jb
(Light-emitting devices)
78.60.Fi
(Electroluminescence)
78.55.-m
(Photoluminescence, properties and materials)
81.15.-z
(Methods of deposition of films and coatings; film growth and epitaxy)
[1] Jeong J, Mascaro D and Blair S 2011 Org. Electron. 12 2095 [2] Doh Y J, Park J S, Jeon W S, Pode R and Kwon J H 2012 Org. Electron. 13 586 [3] Wang D D, Wu Z X, Zhang X W, Jiao B, Liang S X, Wang D W, He R L and Hou X 2010 Org. Electron. 11 641 [4] Zhang X W, Wu Z X, Jiao B, Wang D D, Wang D W and Hou X 2012 Displays 33 129 [5] Ding Z C, Xing R B, Fu Q A, Ma D G and Han Y C 2011 Org. Electron. 12 703 [6] Pardo D A, Jabbour G E and Peyghambarian N 2000 Adv. Mater. 12 1249 [7] Duan L A, Hou L D, Lee T W, Qiao J A, Zhang D Q, Dong G F, Wang L D and Qiu Y 2010 J. Mater. Chem. 20 6392 [8] Gong X, Ma W L, Ostrowski J C, Bazan G C, Moses D and Heeger A J 2004 Adv. Mater. 16 615 [9] Zhu W G, Mo Y Q, Yuan M, Yang W and Cao Y 2002 Appl. Phys. Lett. 80 2045 [10] Chen Z, Jiang C Y, Niu Q L, Peng J B and Cao Y 2008 Org. Electron. 9 1002 [11] Kim H, Byun Y, Das R R, Choi B K and Ahn P S 2007 Appl. Phys. Lett. 91 093512 [12] Lai W Y, Xia R D, He Q Y, Levermore P A, Huang W and Bradley D D C 2009 Adv. Mater. 21 355 [13] Zhen C G, Chen Z K, Liu Q D, Dai Y F, Shin R Y C, Chang S Y and Kieffer J 2009 Adv. Mater. 21 2425 [14] Culligan S W, Geng Y H, Chen S H, Klubek K, Vaeth K M and Tang C W 2003 Adv. Mater. 15 1176 [15] Mishra A, Periasamy N, Patankar M P and Narasimhan K L 2005 Dyes Pigm. 66 89 [16] Ryu D W, Kim K S, Choi C K, Park Y I, Kang I N and Park J W 2007 Curr. Appl. Phys. 7 396 [17] Zhou Y, He Q G, Yang Y, Zhong H Z, He C, Sang G Y, Liu W, Yang C H, Bai F L and Li Y F 2008 Adv. Funct. Mater. 18 3299 [18] Qiao J, Wang L D, Xie J F, Lei G T, Wu G S and Qiu Y 2005 Chem. Commun. 4560 [19] Lai W Y, He Q Y, Zhu R, Chen Q Q and Huang W 2008 Adv. Funct. Mater. 18 265 [20] Lai W Y, Zhu R, Fan Q L, Hou L T, Cao Y and Huang W 2006 Macromolecules 39 3707 [21] Lai W Y, Chen Q Q, He Q Y, Fan Q L and Huang W 2006 Chem. Commun. 18 1959 [22] Liu F, Lai W Y, Tang C, Wu H B, Chen Q Q, Peng B, Wei W, Huang W and Cao Y 2008 Macromol. Rapid Commun. 29 659 [23] Lai W Y, Xia R D, Bradley D D C and Huang W 2010 Chem. Eur. J. 16 8471 [24] Xia R D, Lai W Y, Levermore P A, Huang W and Bradley D D C 2009 Adv. Funct. Mater. 19 2844 [25] Wang D D, Wu Z X, Zhang X W, Jiao B, Wang D W and Hou X 2010 Chin. Sci. Bull. 55 986 [26] Ho M H, Hsieh M T, Lin K H, Chen T M, Chen J F and Chen C 2009 Appl. Phys. Lett. 94 023306 [27] Lee M T, Liao C H, Tsai C H and Chen C H 2005 Adv. Mater. 17 2493 [28] Chin B D, Suh M C, Kim M H, Lee S T, Kim H D and Chung H K 2005 Appl. Phys. Lett. 86 133505 [29] Chang M Y, Han Y K, Wang C C, Lin S C, Tsai Y J and Huang W Y 2008 J. Electrochem. Soc. 155 J365 [30] Liu J, Wang J, Huang S J, Chen H A and He G F 2013 Phys. Status Solidi A 210 489 [31] Su W M, Li W L, Hong Z R, Li M T, Yu T Z, Chu B, Li B, Zhang Z Q and Hu Z Z 2005 Appl. Phys. Lett. 87 213501 [32] Chu T Y, Chen J F, Chen S Y, Chen C J and Chen C H 2006 Appl. Phys. Lett. 89 053503 [33] Bulovic V, Shoustikov A, Baldo M A, Bose E, Kozlov V G, Thompson M E and Forrest S R 1998 Chem. Phys. Lett. 287 455 [34] Bulovic V, Deshpande R, Thompson M E and Forrest S R 1999 Chem. Phys. Lett. 308 317
[1]
. [J]. 中国物理快报, 2022, 39(12): 128401-.
[2]
. [J]. 中国物理快报, 2020, 37(3): 38502-.
[3]
. [J]. 中国物理快报, 2017, 34(7): 77203-.
[4]
. [J]. 中国物理快报, 2017, 34(3): 38501-038501.
[5]
. [J]. 中国物理快报, 2016, 33(11): 117301-117301.
[6]
. [J]. 中国物理快报, 2016, 33(11): 117302-117302.
[7]
. [J]. 中国物理快报, 2016, 33(08): 88503-088503.
[8]
. [J]. 中国物理快报, 2016, 33(07): 77801-077801.
[9]
. [J]. 中国物理快报, 2016, 33(04): 48501-048501.
[10]
. [J]. 中国物理快报, 2016, 33(03): 38501-038501.
[11]
. [J]. 中国物理快报, 2016, 33(02): 28501-028501.
[12]
. [J]. 中国物理快报, 2015, 32(10): 107805-107805.
[13]
. [J]. 中国物理快报, 2015, 32(10): 108501-108501.
[14]
. [J]. 中国物理快报, 2015, 32(08): 87201-087201.
[15]
. [J]. 中国物理快报, 2015, 32(07): 77206-077206.