摘要A novel approach for the design of phosphor-free single-chip white light-emitting diodes (LEDs) is proposed by employing InAlGaN irregular multiple quantum well (IMQW) structures. The electronic and optical properties of the designed InAlGaN IMQWs are analyzed in detail by fully considering the effects of strain, well-coupling, valence band-mixing, and quasi-bound states using the effective-mass Hamiltonian deduced from k12539;p theory. For comparison, three different types of InAlGaN IMQW structures with ultra-wide band spontaneous emission spectra are analyzed, and the results show that phosphor-free single-chip white light LEDs with more than 200nm emission band can be obtained using properly designed InAlGaN IMQW structures.
Abstract:A novel approach for the design of phosphor-free single-chip white light-emitting diodes (LEDs) is proposed by employing InAlGaN irregular multiple quantum well (IMQW) structures. The electronic and optical properties of the designed InAlGaN IMQWs are analyzed in detail by fully considering the effects of strain, well-coupling, valence band-mixing, and quasi-bound states using the effective-mass Hamiltonian deduced from k12539;p theory. For comparison, three different types of InAlGaN IMQW structures with ultra-wide band spontaneous emission spectra are analyzed, and the results show that phosphor-free single-chip white light LEDs with more than 200nm emission band can be obtained using properly designed InAlGaN IMQW structures.
LU Hui-Min;CHEN Gen-Xiang;JIAN Shui-Sheng. Design of Phosphor-Free Single-Chip White Light-Emitting Diodes Using InAlGaN Irregular Multiple Quantum Well Structures[J]. 中国物理快报, 2009, 26(8): 87803-087803.
LU Hui-Min, CHEN Gen-Xiang, JIAN Shui-Sheng. Design of Phosphor-Free Single-Chip White Light-Emitting Diodes Using InAlGaN Irregular Multiple Quantum Well Structures. Chin. Phys. Lett., 2009, 26(8): 87803-087803.
[1] Mach R M, Mueller G O, Krames M R and Trottier T 2002 IEEE J. Select. Top. Quantum Electron. 8 339 [2] Kim J S, Jeon P E, Choi J C and Parka H L 2004 Appl.Phys. Lett. 84 2932 [3] Guo X Y, Graff J W and Schubert E F 2000 Proc. SPIE 60 3938 [4] Guo X, Shen G D, Guan B L, Gu X L, Wu D and Li Y B 2008 Appl. Phys. Lett. 92 013507 [5] Sheu J K, Pan C J, Chi G C, Kuo C H, Wu L W, Chen C H,Chang S J and Su Y K 2002 IEEE Photon. Technol. Lett. 14450 [6] Park I K, Kim J Y, Kwon M K, Cho C Y, Lim J H and Park S J2008 Appl. Phys. Lett. 92 091110 [7] Chuang S L and Chang C S 1996 Phys. Rev. B 542491 [8] Chuang S L 1996 IEEE J. Quantum Electron. 321791 [9] Yeo Y C, Chong T C, Li M F and Fan W J 1998 IEEE J.Quantum Electron. 34 526 [10] Park S H and Chuang S L 2000 J. Appl. Phys. 87 353 [11] Galczak J, Sarza{\la R P and Nakwaski W 2005 Physica E 25 504 [12] Piprek J 2003 Semiconductor Optoelectronic Devices (SanDiego: Academic) [13] Feng Z C 2006 I$\!$I$\!$I-Nitride Semiconductor Materials(Taiwan: Imperial College) [14] Rinke P, Scheffler M Qteish A, Winkelnkemper M, Bimberg Dand Neugebauer J 2006 Appl. Phys. Lett. 89 161919 [15] Adachi S 1989 Phys. Rev. B 39 12612 [16] Park S H and Chuang S L 2000 Appl. Phys. Lett. 76 1981 [17] Gu X L, Guo X, Wu D, Xu L H, Liang T, Guo J and Shen G D2007 Acta Phys. Sin. 56 4977 (in Chinese) [18] Chen C H, Chang S J, Su Y K, Sheu J K, Chen J F, Kuo C Hand Lin Y C 2002 IEEE Photon. Technol. Lett. 14 908