A Photovoltaic InAs Quantum-Dot Infrared Photodetector
TANG Guang-Hua, XU Bo, JIANG Li-Wen, KONG Jin-Xia, KONG Ning, LIANG De-Chun, LIANG Ping, YE Xiao-Ling, JIN Peng, LIU Feng-Qi, CHEN Yong-Hai, WANG Zhan-Guo
Key Laboratory of Semiconductor Materials Sciences, Instituteof Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083
A Photovoltaic InAs Quantum-Dot Infrared Photodetector
TANG Guang-Hua, XU Bo, JIANG Li-Wen, KONG Jin-Xia, KONG Ning, LIANG De-Chun, LIANG Ping, YE Xiao-Ling, JIN Peng, LIU Feng-Qi, CHEN Yong-Hai, WANG Zhan-Guo
Key Laboratory of Semiconductor Materials Sciences, Instituteof Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083
A photovoltaic quantum dot infrared photodetector with InAs/GaAs/AlGaAs structures is reported. The detector is sensitive to normal incident light. At zero bias and 78 K, a clear spectral response in the range of 2-7 μm has been obtained with peaks at 3.1, 4.8 and 5.7 μm. The bandgap energies of GaAs and Al0.2Ga0.8As at 78 K are calculated and the energy diagram of the transitions in the Quantum-Dot Infrared Photodetector (QDIP) is given out. The photocurrent signals can be detected up to 110 K, which is state-of-the-art for photovoltaic QDIP. The photovoltaic effect in our detector is a result of the enhanced band asymmetry as we design in the structure.
A photovoltaic quantum dot infrared photodetector with InAs/GaAs/AlGaAs structures is reported. The detector is sensitive to normal incident light. At zero bias and 78 K, a clear spectral response in the range of 2-7 μm has been obtained with peaks at 3.1, 4.8 and 5.7 μm. The bandgap energies of GaAs and Al0.2Ga0.8As at 78 K are calculated and the energy diagram of the transitions in the Quantum-Dot Infrared Photodetector (QDIP) is given out. The photocurrent signals can be detected up to 110 K, which is state-of-the-art for photovoltaic QDIP. The photovoltaic effect in our detector is a result of the enhanced band asymmetry as we design in the structure.
[1] Jiang L, Li S S, Yeh N T, Chyi J I, Ross C E and Jones K S 2003 Appl. Phys. Lett. 82 1986 [2] Ariyawansa G, Apalkov V, Perera A G U, Matsik S G, Huang G and Bhattacharya P 2008 Appl. Phys. Lett. 92 111104 [3] Chakrabarti S, Stiff-Roberts A D, Bhattacharya P, Gunapala S, Bandara S, Rafol S B and Kennerly S W 2004 IEEE Photon. Technol. Lett. 16 1361 [4] Fu L, Lever P, Sears K, Tan H H and Jagadish C 2005 IEEE Electron. Device Lett. 26 628 [5] Tsao S, Lim H, Seo H, Zhang W and Razeghi M 2008 IEEE Sens. J. 8 936 [6] Attaluri R S, Annamalai S, Posani K T, Stintz A and Krishna S 2006 J. Appl. Phys. 99 083105 [7] Wang Z C, Xu B, Chen Y H, Shi L W, Liang Z M and Wang Z G 2008 Chin. Phys. Lett. 25 2645 [8] Luna E, Sánchez-Rojas J L, Guzmán A, Tijero J M G and Muñoz E 2003 IEEE Photon. Technol. Lett. 15 105 [9] Schonbein C, Schneider H, Bihlmann G, Schwarz K and Koidl P 1996 Appl. Phys. Lett. 68 973 [10] Schneider H, Schonbein C, Walther M, Schwarz K, Fleissner J and Koidl P 1997 Appl. Phys. Lett. 71 246 [11] Lee J H, Chiang J C and Li S S 1999 Appl. Phys. Lett. 74 765 [12] Rogalski A 2003 Prog. Quantum Electron. 27 59 [13] Pan D, Towe E and Kennerly S 2000 Appl. Phys. Lett. 76 3301 [14] Jin P, Li C M, Zhang Z Y, Liu F Q, Chen Y H, Ye X L, Xu B and Wang Z G 2004 Appl. Phys. Lett. 85 2791 [15] Ling H S, Wang S Y, Lee C P and Lo M C 2008 Appl. Phys. Lett. 92 193506 [16] Levinshtein M, Rumyantsev S and Shur M 1996 Handbook Series on Semiconductor Parameters (Singapore: World Scientific)