A model for the effect of rapid thermal annealing on the formation of In-N clusters in strained GaInNAs is developed according to thermodynamics. In the model, the lowest annealing temperature influencing the redistribution of atoms is introduced. The average variation of energy for formation per In-N bond is obtained by fitting the experimental values. Using the present model, we calculate the average number of nearest-neighbor In atoms per N atom after annealing. The obtained results are compared with the experiment. The qualitative analysis and quantitative analysis are in good agreement with each other. The model is helpful to explain the essence of the blueshift caused by annealing.
A model for the effect of rapid thermal annealing on the formation of In-N clusters in strained GaInNAs is developed according to thermodynamics. In the model, the lowest annealing temperature influencing the redistribution of atoms is introduced. The average variation of energy for formation per In-N bond is obtained by fitting the experimental values. Using the present model, we calculate the average number of nearest-neighbor In atoms per N atom after annealing. The obtained results are compared with the experiment. The qualitative analysis and quantitative analysis are in good agreement with each other. The model is helpful to explain the essence of the blueshift caused by annealing.
(Optical properties of bulk materials and thin films)
引用本文:
ZHAO Chuan-Zhen;ZHANG Rong;LIU Bin;LI Ming;XIE Zi-Li;XIU Xiang-Qian;ZHENG You-Dou. Effect of Rapid Thermal Annealing on the Formation of In-N Clusters in Strained InGaNAs[J]. 中国物理快报, 2010, 27(7): 77802-077802.
ZHAO Chuan-Zhen, ZHANG Rong, LIU Bin, LI Ming, XIE Zi-Li, XIU Xiang-Qian, ZHENG You-Dou. Effect of Rapid Thermal Annealing on the Formation of In-N Clusters in Strained InGaNAs. Chin. Phys. Lett., 2010, 27(7): 77802-077802.
[1] Lordi V, Gambin V, Friedrich S, Funk T, Takizawa T, Uno K and Harris J S 2003 Phys. Rev. Lett. 90 145505 [2] Klar P J, Gruning H, Koch J, Schafer S, Volz K, Stolz W and Heimbrodt W 2001 Phys. Rev. B 64 121203 [3] Liverini V, Rrtz A and Keller U 2006 J. Appl. Phys. 99 113103 [4] Duboz J Y, Gupta J A, Wasilewski Z R, Ramsey J, Williams R L, Aers G C, Riel B J and Sproule G I 2007 Phys. Rev. B 75 045313 [5] Cheah W K, Fan W J, Yoon S F, Ma B S, Ng T K, Liu R and Wee A T S 2006 Semicond. Sci.Technol. 21 808 [6] Kudrawiec R, Sek G., Misiewicz J, Li L H and Harmand J C 2004 Solid Staste Commun. 129 353 [7] Hugues M, Damilano B, Chauveau J M, Duboz J Y and Massies J 2007 Phys. Rev. B 75 045313 [8] Alt H C, Gomeniuk Y V and Mussler G 2006 Semicond. Sci. Technol. 21 1425 [9] Klar P J and Volz K 2004 J. Phys.: Condens. Matter. 16 S3053 [10] Zhao H, Xu Y Q, Ni H Q, Zhang S Y, Wu D H, Han Q, Wu R H and Niu Z C 2006 J. Appl. Phys. 99 034903 [11] Kim K and Zunger A 2001 Phys. Rev. Lett. 86 2609 [12] Rubel O, Volz K, Torunski T, Baranovskii S D, Grosse F and Stolz W 2004 Appl. Phys. Lett. 85 5908 [13] Wen Y H, Tang J Y, Zhao C Z, Wu L Z, Kong Y T, Tang L L, Liu C, Wu L F, Li S F and Chen J F 2008 Chin. J. Semicond. 29 105 [14] Lordi V, Yuen H B and Bank S R, Wistey M A and Harris J S 2005 Phys. Rev. B 71 125309 [15] Kurtz S, Webb J, Gedvilas L, Fiedman D, Geisz J, Olson J, King R, Joslin D and Karam N 2001 Appl. Phys. Lett. 78 748 [16] Kudrawiec R, Pavelescu E M, Anerzejewski J, Sek G, Misiewicz J, Dumitrescu M, Konttinen J, Gheorghiu A and Pessa M 2004 J. Appl. Phys. 96 2576 [17] Kudrawiec R, Pavelescu E M, Andrzejewski J, Misiewicz J, Gheorghiu A, Jouhti T and Pessa M 2004 J. Appl. Phys. 96 2909