We report the fabrication of high breakdown voltage metal-insulator-metal (MIM) capacitors with 200-nm silicon nitride deposited by plasma-enhanced chemical vapor deposition with 0.957 SiH4/NH3 gas mixing rate, 0.9 Torr working pressure, and 60 W rf power at 250º chamber temperature. Some optimized mechanisms such as metal source wiping, pre-melting and evaporation rate adjustment are used for increasing the yield of the MIM capacitors. N2 annealing and O2/H2 plasma pre-deposition treatment is proposed to increase the reliability of the MIM capacitors in high-temperature, high-pressure, and high-humidity environments. A 97% yield and up to 148 V breakdown voltage of a 13.06 pF MIM capacitor with 0.04 mm2 die area can be fabricated.
We report the fabrication of high breakdown voltage metal-insulator-metal (MIM) capacitors with 200-nm silicon nitride deposited by plasma-enhanced chemical vapor deposition with 0.957 SiH4/NH3 gas mixing rate, 0.9 Torr working pressure, and 60 W rf power at 250º chamber temperature. Some optimized mechanisms such as metal source wiping, pre-melting and evaporation rate adjustment are used for increasing the yield of the MIM capacitors. N2 annealing and O2/H2 plasma pre-deposition treatment is proposed to increase the reliability of the MIM capacitors in high-temperature, high-pressure, and high-humidity environments. A 97% yield and up to 148 V breakdown voltage of a 13.06 pF MIM capacitor with 0.04 mm2 die area can be fabricated.
WANG Cong;ZHANG Fang;KIM Nam-Young. Development and Characterization of Metal-Insulator-Metal Capacitors with SiNx Thin Films by Plasma-Enhanced Chemical Vapor Deposition[J]. 中国物理快报, 2010, 27(7): 78101-078101.
WANG Cong, ZHANG Fang, KIM Nam-Young. Development and Characterization of Metal-Insulator-Metal Capacitors with SiNx Thin Films by Plasma-Enhanced Chemical Vapor Deposition. Chin. Phys. Lett., 2010, 27(7): 78101-078101.
[1] Liu L J, Kuo S M, Abrokwah J, Ray M, Maurer D and Miller M 2007 IEEE Trans. Components Packaging Technol. 30 556 [2] Wang C, Lee J H and Kim N Y 2010 Microwave Opt. Technol. Lett. 52 618 [3] Tenedorio J G and Terizian P A 1984 IEEE Electron. Device Lett. 5 199 [4] Yang Y, Gao Y and Gong P L 2008 Chin. Phys. Lett. 25 3048 [5] Yang Y et al 2009 Chin. Phys. Lett. 26 027801 [6] Chou Y C et al 2003 IEEE Electron. Device Lett. 24 7 [7] Guo L C et al 2009 Chin. Phys. Lett. 26 017301 [8] Yang L et al 2009 Chin. Phys. Lett. 26 117104 [9] Kapila A, Malhotra V, Camnitz L H, Seaward K L and Mars D 1995 J. Vac. Sci. Technol. B 13 10 [10] Jin Z, Su Y B, Cheng W, Liu X Y, Xu A H and Qi M 2008 Chin. Phys. Lett. 25 2683 [11] Jin Z, Su Y B, Cheng W, Liu X Y, Xu A H and Qi M 2008 Chin. Phys. Lett. 25 2686 [12] Ng C H, Chew K W and Chu S F 2003 IEEE Electron. Device Lett. 24 506 [13] Jeong I H, Kim J Y, Lee B J, Choi J J and Kwon Y S 2005 Microwave Opt. Technol. Lett. 45 441 [14] Lee J W, Mackenzie K D, Johnson D, Sasserath J N, Pearton S J and Ren F 2000 J. Electrochem. Soc. 147 1481 [15] Park Y B and Rhee S W 2001 J. Mater. Sci.: Matrt. Electron. 12 515 [16] Kim B W, Park J Y, Lee K K and Han J G 2006 Appl. Surf. Sci. 252 4138 [17] Yoon D H, Yoon S G and Kim Y T 2007 Thin Solid Films 515 5004 [18] Kim Y T, Cho S M, Lee H Y, Yoon H D and Yoon D H 2003 Surf. Coat. Technol. 174 166 [19] Gao M Z, Zhang F, Liu J and Sun H N 2009 Chin. Phys. Lett. 26 088105 [20] Zhong S et al 2008 Chin. Phys. Lett. 25 2585 [21] Kong C Y et al 2008 Chin. Phys. Lett. 25 1128