摘要Considering the strong built-in electric field (BEF) effects due to the spontaneous and piezoelectric polarizations, the intersubband optical absorptions and refractive index changes for an InxGa1-xN/AlyGa1-yN strained single quantum well are studied theoretically within the framework of the density matrix method and effective-mass approximation. The linear, third-order nonlinear and total absorption coefficients and refractive index changes are calculated as a function of the incident optical intensity and photon energy. Our results show that both the incident optical intensity and the strong BEF have great influence on the total absorptions and refractive index changes. The results are significant for designing some important photodetectors and the photonic crystal devices with adjustable photonic band structures.
Abstract:Considering the strong built-in electric field (BEF) effects due to the spontaneous and piezoelectric polarizations, the intersubband optical absorptions and refractive index changes for an InxGa1-xN/AlyGa1-yN strained single quantum well are studied theoretically within the framework of the density matrix method and effective-mass approximation. The linear, third-order nonlinear and total absorption coefficients and refractive index changes are calculated as a function of the incident optical intensity and photon energy. Our results show that both the incident optical intensity and the strong BEF have great influence on the total absorptions and refractive index changes. The results are significant for designing some important photodetectors and the photonic crystal devices with adjustable photonic band structures.
CHI Yue-Meng;SHI Jun-Jie. Linear and Nonlinear Intersubband Optical Absorptions and Refractive Index Changes in InGaN Strained Single Quantum Wells: Strong Built-in[J]. 中国物理快报, 2007, 24(8): 2376-2379.
CHI Yue-Meng, SHI Jun-Jie. Linear and Nonlinear Intersubband Optical Absorptions and Refractive Index Changes in InGaN Strained Single Quantum Wells: Strong Built-in. Chin. Phys. Lett., 2007, 24(8): 2376-2379.
[1] Nakamura S and Chichibu S F 2000 Introduction to Nitride Semiconductor Blue Lasers and LightEmitting Diodes (London: Taylor and Francis) [2] Mukai T, Narimatsu H and Nakamura S 1998 Jpn.J. Appl. Phys. I$\!$I 37 L479 [3] Chi Y M and Shi J J 2006 Chin. Phys. Lett. 23 2206 [4] Chi Y M and Shi J J 2007 Phys. Lett. A 361 156 [5] Iizuka N, Kaneko K and Suzuki N 2002 Appl. Phys. Lett. 81 1803 [6] Hofstetter D et al 2002 Appl. Phys. Lett. 80 2991 [7] Gmachl C, Ng H M and Chu S N G 2000 Appl. Phys. Lett. 77 3722 [8] Lei S Y, Shen B and Zhang G Y 2006 Chin. Phys. Lett. 231574 [9] Lei S Y, Shen B and Zhang G Y 2006 Chin. Phys. Lett. 23450 [10] Ambacher O 1998 J. Phys. D 31 2653 [11] Bernardini F, Fiorentini V and Vanderbilt D1997 Phys. Rev. Lett. 79 3958 [12] Waltereit P, Craven M D, Denbaars S P and Speck J S 2002 J. Appl. Phys. 92 456 [13] Shi J J and Gan Z Z 2003 J. Appl. Phys. 94 407 [14] Park S H 2000 Jpn. J. Appl. Phys. I 393478 [15] Wan S P, Xia J B and Chang K 2001 J. Appl.Phys. 90 6210 [16] Takeuchi T, Amano H and Akasaki I 2000 Jpn. J. Appl.Phys. I 39 L413 [17] Yang H C, Lin T Y and Chen Y F 2001 Appl. Phys. Lett. 78 338 [18] Takeuchi T et al 1998 Appl. Phys. Lett. 73 1691 [19] Shi J J, Xia C X, Wei S Y and Liu Z X 2005 J. Appl.Phys. 97 083705 [20] Park S H and Chuang S L 2000 J. Appl. Phys. 87353 [21] Kuhn K J, Lyengar G U and Yee S 1991 J. Appl. Phys. 70 5010 [22] Shi J J and Goldys E M 1999 IEEE Trans. Electron.Devices 46 83 [23] Takeuchi T et al 1997 J. Jpn. Appl. Phys. I$\!$I 36 L382 [24] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 Appl. Phys.Lett. 89 5815 [25] Suzuki N and Iizuka N 1999 Jpn. J. Appl. Phys. I$\!$I 38 L463 [26] Park S H, Ahn D, Par E H and Yoo T K 2005 Appl. Phys. Lett. 87 044103 [27] Yamaguchi M et al 1997 J. Phys.: Condens. Matter 9 241 [28] Adelmann C et al 20003 Appl. Phys. Lett. 82 4154 [29] Cingolani R et al 2000 Phys. Rev. B 61 2711 [30] Craven M D, Waltereit P et al 2004 Appl. Phys. Lett. 84 496 [31] Lai C Y et al 2001 Phys. Status Solidi B 228 77