A thermoelectric material SmxCo4Sb12 (0<x≤1.0)compounds exhibits n-type conduction. The absolute value of the Seebeck coefficient decreases with increasing Sm fraction. The resistivity increases with samarium content x from 0.1 to 0.2, but decreases dramatically when x changes from 0.2 to 1.0. The maximum power factor reaches 13.1 μW.cm-1K-2 at x=1.0, which is larger than the data previously reported for the La-doped CoSb3 prepared at room pressure.
A thermoelectric material SmxCo4Sb12 (0<x≤1.0)compounds exhibits n-type conduction. The absolute value of the Seebeck coefficient decreases with increasing Sm fraction. The resistivity increases with samarium content x from 0.1 to 0.2, but decreases dramatically when x changes from 0.2 to 1.0. The maximum power factor reaches 13.1 μW.cm-1K-2 at x=1.0, which is larger than the data previously reported for the La-doped CoSb3 prepared at room pressure.
JIANG Yi-Ping;JIA Xiao-Peng;GUO Wei;XU Hui-Wen;DENG Le;ZHENG Shi-Zhao;MA Hong-An. Elevation of the Power Factor of Co4Sb12 Skutterudite with Sm-Doping in High-Pressure High-Temperature Synthesis[J]. 中国物理快报, 2010, 27(6): 68102-068102.
JIANG Yi-Ping, JIA Xiao-Peng, GUO Wei, XU Hui-Wen, DENG Le, ZHENG Shi-Zhao, MA Hong-An. Elevation of the Power Factor of Co4Sb12 Skutterudite with Sm-Doping in High-Pressure High-Temperature Synthesis. Chin. Phys. Lett., 2010, 27(6): 68102-068102.
[1] Nolas G S, Morelli D T and Tritt T M 1999 Ann Rev Mater Sci. 29 89 [2] Sales B C, Mandrus D, Chakoumakos B C, Keppens V and Thompson J R 1997 Phys. Rev. B 56 15081 [3] Peng J Y, Alboni P N, He J, Zhang B, Su Z, Holgate T, Gothard N and Tritt T M 2008 J. Appl. Phys. 104 053710 [4] Tritt T M 1999 Science 283 804 [5] Sales B C, Mandrus D and Williams R K 1996 Science 272 1325 [6] DiSalvo F J 1999 Science 285 703 [7] Liu W S, Zhang B P, Zhao L D and Li J F 2008 Chem. Matter. 20 7526 [8] Nolas G S, Kaeser M, Littleton T M and Trrit T M 2000 Appl. Phys. Lett. 77 1855 [9] Shi X, Chen L D, Bai S Q, Huang X Y, Zhao X Y and Ucher C 2007 J. Appl. Phys. 102 103709 [10] Pei Y Z, Bai S Q, Zhao X Y, Zhang W and Chen L D 2008 Solid State Sci. 10 1422 [11] Lue C S and Chen S C 2009 Phys. Rev. B 79 125108 [12] Zhai P C, Zhao W Y, Li Y, Liu S, Tang X F, Zhang Q J and Niino M 2006 Appl. Phys. Lett. 89 05211 [13] Yang C P, Wang H, Iwasa K, Kohgi M, Sugawara H and Sato H 2007 Appl. Phys. Lett. 90 102503 [14] Nolas G S, Cohn J L and Slack G A 1998 Phys. Rev. B 56 164 [15] Badding J V 1998 Annu. Rev. Mater. Sci. 28 631 [16] Zhu P W, Imai Y, Isoda Y, Shinohara Y, Jia X P and Zou G T 2005 Chin. Phys. Lett. 22 2103 [17] Ren G Z, Jia X P, Zhu P W, Zang C Y, Ma H A and Wang X C 2005 Chin. Phys. Lett. 22 236 [18] Su T C, Jia X P, Ma H A, Jiang Y P, Dong N, Deng L, Zhao X B, Zhu T J and Wei C 2009 J. Alloys Compd. 468 410 [19] Guo J G, Jia X P, Su T C, Dong N and Ma H A 2008 J. Alloys Compd. 458 428 [20] Ma H A, Su T C, Zhu PW, Guo J G and Jia X P 2008 J. Alloys Compd. 454 415 [21] Gao Y W, He Y Z and Zhu L L 2010 Chin. Sci. Bull. 55 16 [22] Chen L D, Kawahara T and Tang X F 2001 J. Appl. Phys. 90 1864 [23] Mahan G D 1997 Solid State Phys. 51 81 [24] Sales B C, Chakoumakos B C and Mandrus D 2000 Phys. Rev. B 61 2475 [25] Mi J L, Zhao X B, Zhu T J and Tu J P 2008 Mater. Lett. 62 2363 [26] Wang H C, Wang C L, Zhang J L, Zhao M L, Liu J, Su W B, Yin N and Mei L M 2009 Chin. Phys. Lett. 26 107301