Realizing n-Type GeTe through Suppressing the Formation of Cation Vacancies and Bi-Doping
Min Zhang , Chaoliang Hu , Qi Zhang , Feng Liu , Shen Han , Chenguang Fu , and Tiejun Zhu*
School of Materials Science and Engineering, and State Key Laboratory of Silicon Materials, Zhejiang University, Zhejiang 310027, China
Abstract :It is known that p-type GeTe-based materials show excellent thermoelectric performance due to the favorable electronic band structure. However, n-type doping in GeTe is of challenge owing to the native Ge vacancies and high hole concentration of about $10^{21}$ cm$^{-3}$. In the present work, the formation energy of cation vacancies of GeTe is increased through alloying PbSe, and further Bi-doping enables the change of carrier conduction from p-type to n-type. As a result, the n-type thermoelectric performance is obtained in GeTe-based materials. A peak $zT$ of 0.34 at 525 K is obtained for (Ge$_{0.6}$Pb$_{0.4})_{0.88}$Bi$_{0.12}$Te$_{0.6}$Se$_{0.4}$. These results highlight the realization of n-type doping in GeTe and pave the way for further optimization of the thermoelectric performance of n-type GeTe.
收稿日期: 2021-08-28
出版日期: 2021-11-18
:
81.05.Hd
(Other semiconductors)
84.60.Rb
(Thermoelectric, electrogasdynamic and other direct energy conversion)
72.20.Pa
(Thermoelectric and thermomagnetic effects)
61.72.jd
(Vacancies)
引用本文:
. [J]. 中国物理快报, 2021, 38(12): 127201-.
Min Zhang, Chaoliang Hu, Qi Zhang, Feng Liu, Shen Han, Chenguang Fu, and Tiejun Zhu. Realizing n-Type GeTe through Suppressing the Formation of Cation Vacancies and Bi-Doping. Chin. Phys. Lett., 2021, 38(12): 127201-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/38/12/127201
或
https://cpl.iphy.ac.cn/CN/Y2021/V38/I12/127201
[1] Bell L E 2008 Science 321 1457
[2] Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F, and Chen G 2012 Energy & Environ. Sci. 5 5147
[3] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[4] Goldsmid H J 2013 Introduction to Thermoelectricity (Berlin: Springer) p 3
[5] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, and Zhao X 2017 Adv. Mater. 29 1605884
[6] Minnich A J, Dresselhaus M S, Ren Z F, and Chen G 2009 Energy & Environ. Sci. 2 466
[7] Hao F, Qiu P, Tang Y, Bai S, Xing T, Chu H S, Zhang Q, Lu P, Zhang T, Ren D, Chen J, Shi X, and Chen L 2016 Energy & Environ. Sci. 9 3120
[8] Zhu T, Fu C, Xie H, Liu Y, and Zhao X 2015 Adv. Energy Mater. 5 1500588
[9] Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H, Bai S, Yang J, Zhang W, and Chen L 2011 J. Am. Chem. Soc. 133 7837
[10] Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J, and Pei Y 2018 Joule 2 976
[11] Roychowdhury S, Samanta M, Perumal S, and Biswas K 2018 Chem. Mater. 30 5799
[12] Ravich Y I 1970 Semiconducting Lead Chalcogenides (New York: Springer Science + Busness Media)
[13] Li J, Chen Z, Zhang X, Sun Y, Yang J, and Pei Y 2017 NPG Asia Mater. 9 e353
[14] Rosi F D, Dismukes J P, and Hockings E F 1960 Electr. Eng. 79 450
[15] Zhang X, Bu Z, Lin S, Chen Z, Li W, and Pei Y 2020 Joule 4 986
[16] Hong M, Zou J, and Chen Z G 2019 Adv. Mater. 31 1807071
[17] Bu Z L, Zhang X Y, Shan B, Tang J, Liu H X, Chen Z W, Lin S q, Li W, and Pei Y Z 2021 Sci. Adv. 7 eabf2738
[18] Lewis J E 1969 Phys. Status Solidi 35 737
[19] Damon D H, Lubell M S, and Mazelsky R 1967 J. Phys. Chem. Solids 28 520
[20] Edwards A H, Pineda A C, Schultz P A, Martin M G, Thompson A P, Hjalmarson H P, and Umrigar C J 2006 Phys. Rev. B 73 45210
[21] Perumal S, Bellare P, Shenoy U S, Waghmare U V, and Biswas K 2017 Chem. Mater. 29 10426
[22] Perumal S, Roychowdhury S, Negi D S, Datta R, and Biswas K 2015 Chem. Mater. 27 7171
[23] Li J, Zhang X, Lin S, Chen Z, and Pei Y 2017 Chem. Mater. 29 605
[24] Li J, Chen Z, Zhang X, Yu H, Wu Z, Xie H, Chen Y, and Pei Y 2017 Adv. Sci. 4 1700341
[25] Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis M G, and Tang X 2018 J. Am. Chem. Soc. 140 2673
[26] Hong M, Wang Y, Liu W, Matsumura S, Wang H, Zou J, and Chen Z G 2018 Adv. Energy Mater. 8 1801837
[27] Hong M, Wang Y, Feng T, Sun Q, Xu S, Matsumura S, Pantelides S T, Zou J, and Chen Z G 2019 J. Am. Chem. Soc. 141 1742
[28] Sun P, Kumar K R, Lyu M, Wang Z, Xiang J, and Zhang W 2021 Innovation 2 100101
[29] Ciucivara A, Sahu B R, and Kleinman L 2007 Phys. Rev. B 75 241201
[30] Wang R F, Li S, Xue W H, Chen C, Wang Y M, Liu X J, and Zhang Q 2021 Rare Met. 40 40
[31] Nielsen M D, Ozolins V, and Heremans J P 2013 Energy & Environ. Sci. 6 570
[32] Xu X, Xie L, Lou Q, Wu D, and He J 2018 Adv. Sci. 5 1801514
[33] Chattopadhyay T, Boucherle J X, and VonSchnering H G 1987 J. Phys. C 20 1431
[34] Lee H S, Kim B S, Cho C W, Oh M W, Min B K, Park S D, and Lee H W 2015 Acta Mater. 91 83
[35] Bu Z, Chen Z, Zhang X, Lin S, Mao J, Li W, Chen Y, and Pei Y 2020 Mater. Today Phys. 15 100260
[36] Cao J, Chien S W, Tan X Y, Tan C K I, Zhu Q, Wu J, Wang X, Zhao Y, Yang L, Yan Q, Liu H, Xu J, and Suwardi A 2021 ChemNanoMat 7 476
[37] Askarpour V and Maassen J 2019 Phys. Rev. B 100 75201
[38] Gibbs Z M, Ricci F, Li G, Zhu H, Persson K, Ceder G, Hautier G, Jain A, and Snyder G J 2017 npj Comput. Mater. 3 8
[39] Samanta M, Ghosh T, Arora R, Waghmare U V, and Biswas K 2019 J. Am. Chem. Soc. 141 19505
[40] Liu Z, Sato N, Guo Q, Gao W, and Mori T 2020 NPG Asia Mater. 12 66
[41] Robertson J 1983 Phys. Rev. B 28 4671
[42] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[44] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[45] Huo H, Wang Y, Xi L, Yang J, and Zhang W 2021 J. Mater. Chem. C 9 5765
[46] Bu Z, Li W, Li J, Zhang X, Mao J, Chen Y, and Pei Y 2019 Mater. Today Phys. 9 100096
[47] Xie L, Chen Y, Liu R, Song E, Xing T, Deng T, Song Q, Liu J, Zheng R, Gao X, Bai S, and Chen L 2020 Nano Energy 68 104347
[48] Yue L, Fang T, Zheng S, Cui W, Wu Y, Chang S, Wang L, Bai P, and Zhao H 2019 ACS Appl. Energy Mater. 2 2596
[49] Zhang X, Li J, Wang X, Chen Z, Mao J, Chen Y, and Pei Y 2018 J. Am. Chem. Soc. 140 15883
[50] Snyder G J, Snyder A H, Wood M, Gurunathan R, Snyder B H, and Niu C 2020 Adv. Mater. 32 2001537
[51] Ren Q, Fu C, Qiu Q, Dai S, Liu Z, Masuda T, Asai S, Hagihala M, Lee S, Torri S, Kamiyama T, He L, Tong X, Felser C, Singh D J, Zhu T, Yang J, and Ma J 2020 Nat. Commun. 11 3142
[52] Goldsmid H J and Sharp J W 1999 J. Electron. Mater. 28 869
[53] Cahill D G, Watson S K, and Pohl R O 1992 Phys. Rev. B 46 6131
[1]
. [J]. 中国物理快报, 2020, 37(1): 12901-.
[2]
. [J]. 中国物理快报, 2019, 36(2): 22901-.
[3]
. [J]. 中国物理快报, 2018, 35(3): 36801-.
[4]
. [J]. 中国物理快报, 2017, 34(6): 68101-.
[5]
. [J]. 中国物理快报, 2016, 33(07): 78102-078102.
[6]
. [J]. 中国物理快报, 2015, 32(12): 128401-128401.
[7]
. [J]. 中国物理快报, 2015, 32(10): 108101-108101.
[8]
. [J]. 中国物理快报, 2014, 31(06): 68402-068402.
[9]
. [J]. 中国物理快报, 2013, 30(12): 128101-128101.
[10]
MA Feng;WANG Shi-Rong**;LI Xiang-Gao;YAN Dong-Hang
. Improved Performance of Fluorinated Copper Phthalocyanine Thin Film Transistors Using Para-hexaphenyl as the Inducing Layer [J]. 中国物理快报, 2011, 28(11): 118501-118501.
[11]
JIANG Yi-Ping;JIA Xiao-Peng;GUO Wei;XU Hui-Wen;DENG Le;ZHENG Shi-Zhao;MA Hong-An. Elevation of the Power Factor of Co4 Sb12 Skutterudite with Sm-Doping in High-Pressure High-Temperature Synthesis [J]. 中国物理快报, 2010, 27(6): 68102-068102.
[12]
LI Zhi-Yun;SUN Ji-Wei;ZHANG Yu-Ming;ZHANG Yi-Men;TANG Xiao-Yan. Methods for Thickness Determination of SiC Homoepilayers by Using Infrared Reflectance Spectroscopy [J]. 中国物理快报, 2010, 27(6): 68103-068103.
[13]
ZHU Pin-Wen;HONG You-Liang;WANG Xin;CHEN Li-Xue;IMAI Yoshio. Preparation of Functional Gradient Material n-PbTe with Continuous Carrier Concentration [J]. 中国物理快报, 2010, 27(5): 58102-058102.
[14]
WANG He;LI Chun-Hong;WANG Li-Juan;WANG Hai-Bo;YAN Dong-Hang. Electrical Response of Flexible Vanadyl-Phthalocyanine Thin-Film Transistors under Bending Conditions [J]. 中国物理快报, 2010, 27(2): 28502-028502.
[15]
JI Zhen-Guo;HAO Fang;WANG Chao;XI Jun-Hua. Centimetre-Long Single Crystalline ZnO Fibres Prepared by Vapour Transportation [J]. 中国物理快报, 2008, 25(9): 3467-3469.