Bipolar Thermoelectrical Transport of SnSe Nanoplate in Low Temperature
Li-Yan Zhou1,2 , Qi Zheng1,2 , Li-Hong Bao1,2 , Wen-Jie Liang1,2,3**
1 Beijing National Center for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing 1001902 CAS Center of Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 1001903 Songshan Lake Materials Laboratory, Dongguan 523808
Abstract :Bulk SnSe is an excellent thermoelectrical material with the highest figure-of-merit value of ZT = 2.8, making it promising in applications. Temperature-dependent electrical and thermoelectrical properties of SnSe nanoplates are studied at low temperature. Conductivity drops and rises again as temperature is lowered. The Seebeck coefficient is positive at room temperature and becomes negative at low temperature. The change of the sign of the Seebeck coefficient indicates influence of bipolar transport of the semiconductive SnSe nanoplate. The bipolar transport is caused by the Fermi energy changing with temperature due to different contributions from donors and acceptors at different temperatures.
收稿日期: 2019-10-12
出版日期: 2019-12-23
:
73.50.Lw
(Thermoelectric effects)
73.50.Gr
(Charge carriers: generation, recombination, lifetime, trapping, mean free paths)
73.63.Bd
(Nanocrystalline materials)
85.80.Fi
(Thermoelectric devices)
[1] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 [2] Nolas G S, Sharp J and Goldsmid H J 2001 Thermoelectrics: Basic Principles and New Materials Development (Berlin: Springer) [3] Rowe D M 1995 CRC Handbook of Thermoelectrics (Boca Raton: CRC Press) [4] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631 [5] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727 [6] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043 [7] Fan P, Cai Z K, Zheng Z H et al 2011 Acta Phys. Sin. 60 98402 (in Chinese) [8] Feng J J, Zhu W and Deng Y 2018 Chin. Phys. B 27 047210 [9] Morelli D T, Caillat T, Fleurial J P, Borshchevsky A, Vandersande J, Chen B and Uher C 1995 Phys. Rev. B 51 9622 [10] Nolas G S, Morelli D T and Tritt T M 1999 Annu. Rev. Mater. Sci. 29 89 [11] Lu T Q, Nan P F, Song S L, Zhu X Y, Zhao H Z and Deng Y 2018 Chin. Phys. B 27 047207 [12] Xu K Q, Zeng H R, Yu H Z, Zhao K Y, Li G R, Song J Q, Shi X, Chen L D 2014 Chin. Phys. Lett. 31 127201 [13] Wu D, Cao X H, Chen S Z, Tang L M, Feng Y X, Chen K Q and Zhou W X 2019 J. Mater. Chem. A 7 19037 [14] Chen R, Lee J, Lee W and Li D 2019 Chem. Rev. 119 9260 [15] Bell L E 2008 Science 321 1457 [16] Kim J, Shim W and Lee W 2015 J. Mater. Chem. C 3 11999 [17] Zhai J, Wang T, Wang H, Su W, Wang X, Chen T and Wang C 2018 Chin. Phys. B 27 047306 [18] Chang C, Wu M, He D, Pei Y, Wu C F, Wu X, Yu H, Zhu F, Wang K, Chen Y, Huang L, Li J F, He J and Zhao L D 2018 Science 360 778 [19] Zhao L D, Chang C, Tan G and Kanatzidis M G 2016 Energy & Environ. Sci. 9 3044 [20] Shi W, Gao M, Wei J, Gao J, Fan C, Ashalley E, Li H and Wang Z 2018 Adv. Sci. (Weinh) 5 1700602 [21] Chen Z G, Shi X, Zhao L D and Zou J 2018 Prog. Mater. Sci. 97 283 [22] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373 [23] Guo R, Wang X, Kuang Y and Huang B 2015 Phys. Rev. B 92 115202 [24] Duong A T, Nguyen V Q, Duvjir G, Duong V T, Kwon S, Song J Y, Lee J K, Lee J E, Park S, Min T, Lee J, Kim J and Cho S 2016 Nat. Commun. 7 13713 [25] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science 320 634 [26] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414 [27] Heremans J P, Dresselhaus M S, Bell L E and Morelli D T 2013 Nat. Nanotechnol. 8 471 [28] Loa I, Popuri S R, Fortes A D and Bos J W G 2018 Phys. Rev. Mater. 2 085405 [29] Pei T, Bao L, Ma R, Song S, Ge B, Wu L, Zhou Z, Wang G, Yang H, Li J, Gu C, Shen C, Du S and Gao H J 2016 Adv. Electron. Mater. 2 1600292 [30] Brovman Y M, Small J P, Hu Y, Fang Y, Lieber C M and Kim P 2016 J. Appl. Phys. 119 234304 [31] Small J P, Perez K M and Kim P 2003 Phys. Rev. Lett. 91 256801 [32] Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Sung Choe H, Suslu A, Chen Y, Ko C, Park J, Liu K, Li J, Hippalgaonkar K, Urban J J, Tongay S and Wu J 2015 Nat. Commun. 6 8573 [33] Tayari V, Senkovskiy B V, Rybkovskiy D, Ehlen N, Fedorov A, Chen C Y, Avila J, Asensio M, Perucchi A, di Pietro P, Yashina L, Fakih I, Hemsworth N, Petrescu M, Gervais G, Grüneis A and Szkopek T 2018 Phys. Rev. B 97 045424 [34] Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P and Majumdar A 2003 J. Heat Transfer 125 881 [35] Afifi M A, Abdel-Aziz M M, Yahia I S, Fadel M and Wahab L A 2008 J. Alloys Compd. 455 92 [36] Brahmi H, Neupane R, Xie L, Singh S, Yarali M, Katwal G, Chen S, Paulose M, Varghese O K and Mavrokefalos A 2018 Nanoscale 10 3863 [37] Bejenari I and Kantser V 2008 Phys. Rev. B 78 115322 [38] Goldsmid H J 2014 Materials 7 2577 [39] Zhang J, Feng X, Xu Y, Guo M, Zhang Z, Ou Y, Feng Y, Li K, Zhang H, Wang L, Chen X, Gan Z, Zhang S C, He K, Ma X, Xue Q K and Wang Y 2015 Phys. Rev. B 91 [40] Mavrokefalos A, Moore A L, Pettes M T, Shi L, Wang W and Li X 2009 J. Appl. Phys. 105 104318 [41] Chen C L, Wang H, Chen Y Y, Day T and Snyder G J 2014 J. Mater. Chem. A 2 11171 [42] Ibrahim D, Vaney J B, Sassi S, Candolfi C, Ohorodniichuk V, Levinsky P, Semprimoschnig C, Dauscher A and Lenoir B 2017 Appl. Phys. Lett. 110 032103 [43] Wang S, Hui S, Peng K, Bailey T P, Liu W, Yan Y, Zhou X, Tang X and Uher C 2018 Appl. Phys. Lett. 112 142102 [44] Hernandez J A, Ruiz A, Fonseca L F, Pettes M T, Jose-Yacaman M and Benitez A 2018 Sci. Rep. 8 11966 [45] Zhou M, Chen X, Li M and Du A 2017 J. Mater. Chem. C 5 1247
[1]
. [J]. 中国物理快报, 2021, 38(12): 126701-.
[2]
. [J]. 中国物理快报, 2021, 38(11): 117201-.
[3]
. [J]. 中国物理快报, 2021, 38(2): 27301-.
[4]
. [J]. 中国物理快报, 2020, 37(12): 120502-.
[5]
. [J]. 中国物理快报, 2019, 36(6): 60501-.
[6]
. [J]. 中国物理快报, 2017, 34(12): 127301-.
[7]
. [J]. 中国物理快报, 2017, 34(2): 27301-027301.
[8]
. [J]. 中国物理快报, 2015, 32(07): 77302-077302.
[9]
. [J]. 中国物理快报, 2014, 31(12): 127201-127201.
[10]
. [J]. 中国物理快报, 2014, 31(09): 97301-097301.
[11]
. [J]. 中国物理快报, 2014, 31(05): 57302-057302.
[12]
. [J]. 中国物理快报, 2012, 29(10): 107201-107201.
[13]
XU Yue;YAN Feng;CHEN Dun-Jun;SHI Yi;WANG Yong-Gang;LI Zhi-Guo;YANG Fan;WANG Jos-Hua;LIN Peter;CHANG Jian-Guang. Improved Programming Efficiency through Additional Boron Implantation at the Active Area Edge in 90nm Localized Charge-Trapping Non-volatile Memory [J]. 中国物理快报, 2010, 27(6): 67201-067201.
[14]
LU Bao-Yang;LIU Cong-Cong;LU Shan;XU Jing-Kun;JIANG Feng-Xing;LI Yu-Zhen;ZHANG Zhuo. Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilms
[J]. 中国物理快报, 2010, 27(5): 57201-057201.
[15]
YU Hai-Ming;S. Granville;YU Da-Peng;J-Ph. Ansermet. Second Harmonic Detection of Spin-Dependent Transport in Magnetic Nanostructures [J]. 中国物理快报, 2010, 27(2): 27201-027201.