Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures
Yun-Yun Yang , Shuai Xu , and Ji-Zhou He*
Department of Physics, Nanchang University, Nanchang 330031, China
Abstract :We propose a model for three-terminal thermionic heat engines based on semiconductor heterostructures. According to electron transport theory, we drive the formulas for the charge current and energy current flowing from the electron reservoir and we then obtain the power output and efficiency in the linear and nonlinear regimes. Furthermore, we analyze the performance characteristic of the thermionic heat engine and get the maximum power output by optimizing the performance parameters. Finally, we optimize the thermodynamic performance of the thermionic heat engine by maximizing the product of the power output and efficiency.
收稿日期: 2020-09-15
出版日期: 2020-12-08
[1] Esposito M, Kawai R, Lindenberg K and Van D B C 2010 Phys. Rev. E 81 041106
[2] Esposito M, Kumar N, Lindenberg K and Van D B C 2012 Phys. Rev. E 85 031117
[3] Li W, Fu J, Yang Y Y and He J Z 2019 Acta Phys. Sin. 68 220501 (in Chinese)
[4] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard I W A and Heath J R 2008 Nature 451 168
[5] Yang Y Y, Xu S, Li W and He J Z 2020 Phys. Scr. 95 095001
[6] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727
[7] Hicks L D, Harman T C and Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230
[8] Venkatasubramanian R, Siivola E, Colpittes T and O'Quinn B 2001 Nature 413 597
[9] Edwards H L, Niu Q and De L A L 1993 Appl. Phys. Lett. 63 1815
[10] Edwards H L, Niu Q, Georgakis G A and De L A L 1995 Phys. Rev. B 52 5714
[11] Jordan A N, Sothmann B, Sánchez R and Büttiker M 2013 Phys. Rev. B 87 075312
[12] Sothmann B, Sánchez R, Jordan A N and Büttiker M 2013 New J. Phys. 15 095021
[13] Lin Z B, Li W, Fu J, Yang Y Y and He J Z 2019 Chin. Phys. Lett. 36 060501
[14] Lin Z B, Yang Y Y, Li W, Wang J H and He J Z 2020 Phys. Rev. E 101 022117
[15] Choi Y and Jordan A N 2015 Physica E 74 465
[16] Jiang J H, Entin-Wohlman O and Imry Y 2012 Phys. Rev. B 85 075412
[17] Jiang J H, Entin-Wohlman O and Imry Y 2013 New J. Phys. 15 075021
[18] Su G Z, Pan Y Z, Zhang Y C, Shih T M and Chen J C 2016 Energy 113 723
[19] Peng W L, Ye Z L, Zhang X and Chen J C 2018 Energy Convers. Manage. 166 74
[20] Qiu S S, Ding Z M, Chen L, Meng F K and Sun F R 2019 Eur. Phys. J. Plus 134 273
[21] Ding Z M, Chen L G, Ge Y L and Xie Z H 2019 Mach. Learn.: Sci. Technol. 62 397
[22] Shi Z C, Fu J, Qin W F and He J Z 2017 Chin. Phys. Lett. 34 110501
[23] Li W, Yang Y Y, Fu J and He J Z 2020 ES Energy & Environ. 7 40
[24] Shakouri A and Bowers J E 1997 Appl. Phys. Lett. 71 1234
[25] Mahan G D, Sofo J O and Bartkowiak M 1998 J. Appl. Phys. 83 4683
[26] Mahan G D and Woods L M 1998 Phys. Rev. Lett. 80 4016
[27] Vining C B and Mahan G D 1999 J. Appl. Phys. 86 6852
[28] Ulrich M D, Barnes P A and Vining C B 2001 J. Appl. Phys. 90 1625
[29] Zebarjadi M 2017 Phys. Rev. Appl. 8 014008
[30] Chen C C, Li Z, Shi L and Cronin S B 2015 Nano Res. 8 666
[31] Wang X, Zebarjadi M and Esfarjani K 2016 Nanoscale 8 14695
[32] Liang S J, Liu B, Hu W, Zhou K and Ang L K 2017 Sci. Rep. 7 46211
[33] Wang X, Zebarjadi M and Esfarjani K 2018 Sci. Rep. 8 9303
[34] Humphrey T E, O'Dwyer M F and Linke H 2005 J. Phys. D 38 2051
[35] Vashaee D and Shakouri A 2004 J. Appl. Phys. 95 1233
[36] Luo X G, He J Z, Long K L, Wang J, Liu N and Qiu T 2014 J. Appl. Phys. 115 244306
[37] Nakpathomkun N, Xu H Q and Linke H 2010 Phys. Rev. B 82 235428
[38] Ferry D and Goodnick S M 1999 Transport in Nanostructures (Cambridge: Cambridge University Press)
[39] Yuan Y, Wang R, He J Z, Ma Y L and Wang J H 2014 Phys. Rev. E 90 052151
[40] De T C, Hernández A C and Roco J M M 2012 Phys. Rev. E 85 010104
[41] De T C, Roco J M M, Hernández A C, Wang Y and Tu Z C 2013 Phys. Rev. E 87 012105
[42] Wang Y, Li M, Tu Z C, Hernández A C and Roco J M M 2012 Phys. Rev. E 86 011127
[1]
. [J]. 中国物理快报, 2022, 39(12): 120502-.
[2]
. [J]. 中国物理快报, 2021, 38(9): 97502-097502.
[3]
. [J]. 中国物理快报, 2021, 38(3): 30501-.
[4]
. [J]. 中国物理快报, 2021, 38(2): 20501-.
[5]
. [J]. 中国物理快报, 2021, 38(2): 24201-.
[6]
. [J]. 中国物理快报, 2020, 37(12): 120501-.
[7]
. [J]. 中国物理快报, 2021, 38(1): 10503-.
[8]
. [J]. 中国物理快报, 2020, 37(8): 80502-080502.
[9]
. [J]. 中国物理快报, 2019, 36(6): 60501-.
[10]
. [J]. 中国物理快报, 2018, 35(7): 70502-.
[11]
. [J]. 中国物理快报, 2016, 33(04): 44401-044401.
[12]
. [J]. 中国物理快报, 2014, 31(1): 10501-010501.
[13]
. [J]. Chin. Phys. Lett., 2013, 30(1): 10501-010501.
[14]
Azad A. Siddiqui**;Syed Muhammad Jawwad Riaz;M. Akbar
. Foliation and the First Law of Black Hole Thermodynamics [J]. 中国物理快报, 2011, 28(5): 50401-050401.
[15]
LI Wei;Q. A. Wang;A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation [J]. 中国物理快报, 2008, 25(4): 1165-1167.