A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation
RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min**
School of Electric Power Engineering, China University of Mining and Technology, Xuzhou 221116
Abstract :The straight chain n -alkanes and their mixture, which can be used as phase change materials (PCM) for thermal energy storage, have attracted much attention in recent years. We employ the molecular dynamics (MD) simulation to investigate their thermophysical properties, including self diffusion and melting of n -octadecane with crystal and amorphous structures. Our results show that, although the initial and melted structures of n -octadecane with crystal and amorphous are different, the melting behaviors of n -octadecane judged by the self diffusion behavior are consistent. The MD simulation indicates that both the crystal and amorphous structures are effective for the property investigation of n -octadecane and the simulated conclusion can be used as reference for modeling the alkanes-based PCM system.
收稿日期: 2013-10-09
出版日期: 2014-01-28
:
05.70.-a
(Thermodynamics)
02.70.Ns
(Molecular dynamics and particle methods)
05.70.Fh
(Phase transitions: general studies)
引用本文:
. [J]. 中国物理快报, 2014, 31(1): 10501-010501.
RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation. Chin. Phys. Lett., 2014, 31(1): 10501-010501.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/31/1/010501
或
https://cpl.iphy.ac.cn/CN/Y2014/V31/I1/10501
[1] Delgado M, Lázaro A, Mazo J and Zalba B 2012 Renewable Sustainable Energy Rev. 16 253 [2] Zhao C Y and Zhang G H 2011 Renewable Sustainable Energy Rev. 15 3813 [3] Farid M M, Khudhair A M, Razack S A K and Al-Hallaj S 2004 Energy Convers. Manage. 45 1597 [4] Rao Z H, Wang S F and Zhang Z G 2012 Renewable Sustainable Energy Rev. 16 3136 [5] Oró E, de Gracia A, Castell A, Farid M M and Cabeza L F 2012 Appl. Energy 99 513 [6] Rathod M K and Banerjee J 2013 Renewable Sustainable Energy Rev. 18 246 [7] He B and Setterwall F 2002 Energy Convers. Manage. 43 1709 [8] Rao Z H, Wang S F and Peng F F 2012 Appl. Energy 100 303 [9] Rao Z H, Wang S F, Peng F F, Zhang W and Zhang Y L 2012 Energy 44 805 [10] Rao Z H, Wang S F, Wu M C, Zhang Y L and Li F H 2012 Energy Convers. Manage. 64 152 [11] Rao Z H, Wang S F and Zhang Y L 2012 Phase Transit. 85 400 [12] Rao Z, Wang S and Peng F 2013 Int. J. Heat Mass Transfer 66 575 [13] Rao Z H, Wang S F, Zhang Y L, Peng F F and Cai S H 2013 Acta Phys. Sin. 56 793 (in Chinese) [14] Rao Z H, Wang S F and Peng F F 2013 Int. J. Heat Mass Transfer 64 581 [15] Yin K L, Xu D J, Xia Q, Ye Y J, Wu G Y and Chen C L 2004 Acta Phys. Chim. Sin. 20 302 [16] Yang J S, Yang C L, Wang M S, Chen B D and Ma X G 2011 Phys. Chem. Chem. Phys. 13 15476 [17] Xiao H, Zhen Z, Sun H, Cao X, Li Z, Song X, Cui X and Liu X 2010 Sci. Chin. Chem. 53 945 [18] Yang H, Liu Y, Zhang H and Li Z S 2006 Polymer 47 7607 [19] Shimizu T and Yamamoto T 2000 J. Chem. Phys. 113 3351 [20] Wentzel N and Milner S T 2010 J. Chem. Phys. 132 044901 [21] Marbeuf A and Brown R 2006 J. Chem. Phys. 124 054901 [22] Li H Z and Yamamoto T 2001 J. Chem. Phys. 114 5774 [23] Firlej L, Kuchta B, Roth M W, Connolly M J and Wexler C 2008 Langmuir 24 12392 [24] Sun H, Ren P and Fried J R 1998 Comput. Theor. Polym. Sci. 8 229 [25] Bunte S W and Sun H 2000 J. Phys. Chem. B 104 2477 [26] Yang J, Ren Y, Tian A M and Sun H A 2000 J. Phys. Chem. B 104 4951 [27] McQuaid M J, Sun H and Rigby D 2004 J. Comput. Chem. 25 61 [28] Rigby D 2004 Fluid Phase Equilib. 217 77 [29] Andersen H C 1980 J. Chem. Phys. 72 2384 [30] Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684 [31] Karasawa N and Goddard W A 1992 Macromolecules 25 7268 [32] Eward P P 1921 Ann. Phys. 369 253 [33] Verlet L 1967 Phys. Rev. 159 98 [34] Accelrys 2010 Mater. Studio Release 5.5 San Diego [35] Tao C G, Feng H J, Zhou J, Lu L H and Lu X H 2009 Acta Phys. Chim. Sin. 25 1373
[1]
. [J]. 中国物理快报, 2022, 39(12): 120502-.
[2]
. [J]. 中国物理快报, 2021, 38(9): 97502-097502.
[3]
. [J]. 中国物理快报, 2021, 38(3): 30501-.
[4]
. [J]. 中国物理快报, 2021, 38(2): 20501-.
[5]
. [J]. 中国物理快报, 2021, 38(2): 24201-.
[6]
. [J]. 中国物理快报, 2020, 37(12): 120501-.
[7]
. [J]. 中国物理快报, 2020, 37(12): 120502-.
[8]
. [J]. 中国物理快报, 2021, 38(1): 10503-.
[9]
. [J]. 中国物理快报, 2020, 37(8): 80502-080502.
[10]
. [J]. 中国物理快报, 2019, 36(6): 60501-.
[11]
. [J]. 中国物理快报, 2018, 35(7): 70502-.
[12]
. [J]. 中国物理快报, 2016, 33(04): 44401-044401.
[13]
. [J]. Chin. Phys. Lett., 2013, 30(1): 10501-010501.
[14]
Azad A. Siddiqui**;Syed Muhammad Jawwad Riaz;M. Akbar
. Foliation and the First Law of Black Hole Thermodynamics [J]. 中国物理快报, 2011, 28(5): 50401-050401.
[15]
LI Wei;Q. A. Wang;A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation [J]. 中国物理快报, 2008, 25(4): 1165-1167.