Reconstruction of Intrinsic Thermal Parameters of Methane Hydrate and Thermal Contact Resistance by Freestanding 3$\omega$ Method
Jia Li, Zhao-Liang Wang** , Gui-Ce Yao
Energy and Power Department, China University of Petroleum (East China), Qingdao 266580
Abstract :It is essential to obtain thermophysical properties of methane hydrate precisely with a freestanding probe for modeling and predicting thermal transport in gas hydrates. A method with a freestanding 3$\omega$ probe is presented to reconstruct the intrinsic thermal conductivity, thermal diffusivity, and thermal contact resistance of methane hydrate. Isolated from the thermal contact resistance, the intrinsic thermal conductivity of methane hydrate decreases between 250 K and 280 K and is 41% larger than the effective value at 253 K. More importantly, when the thermal contact resistance is isolated, the temperature dependence of intrinsic thermal conductivity shows a converse trend with the generally accepted glass-like feature at high temperature. Otherwise, thermal contact resistances measured in the experiment between the freestanding 3$\omega$ probe and the methane hydrate sample are extraordinary large. The freestanding 3$\omega$ method in this work is expected to measure the thermal property of methane hydrate more accurately.
收稿日期: 2018-04-09
出版日期: 2018-06-24
[1] Sloan E D 1998 Clathrate Hydrates of Natural Gases II (New York: Marcel Dekker Inc) [2] Kerr R A 2004 Science 303 946 [3] Buffett B A 2000 Annu. ReV. Earth Planet. Sci. 28 477 [4] Ross R G, Andersson P and Bäckström G 1981 Nature 290 322 [5] English N J and Tse J S 2010 Energies 3 1934 [6] Waite W F, Stern L A, Kirby S H, Winters W J and Mason D H 2007 Geophys. J. Int. 169 767 [7] Tse J S and White M A 1988 J. Phys. Chem. 92 5006 [8] Tse J S 1994 J. Inclusion Phenom. M0l. Recognit. Chem. 17 259 [9] Gupta A, Kneafsey T J, Moridis G J, Seol Y, Kowalsky M B and Sloan E D 2006 J. Phys. Chem. B 110 16384 [10] Demartin B J 1953 J. Soc. Psychol. 38 99 [11] Krivchikov A I, Gorodilov B Y, Korolyuk O A, Manzhelii V G, Conrad H and Press W 2005 J. Low Temp. Phys. 139 693 [12] Krivchikov A I, Gorodilov B Y, Korolyuk O A, Manzhelii V G, Romantsova O O, Conrad H, Press W, Tse J S and Klug D D 2006 Phys. Rev. B 73 064203 [13] Cook J G and Leaist D G 1983 Geophys. Res. Lett. 10 397 [14] Huang D Z and Fan S S 2004 J. Chem. Eng. Data 49 1479 [15] Huang D Z, Fan S S, Liang D Q and Feng Z P 2005 Chin. J. Geophys. 48 1201 [16] Rosenbaum E J, English N J, Johnson J K, Shaw D W and Warzinski R P 2007 J. Phys. Chem. B 111 13194 [17] Inoue R, Tanaka H and Nakanishi K 1996 J. Chem. Phys. 104 9569 [18] Tse J S, Shpakov V P, Murashov V V and Belosludov V R 1997 J. Chem. Phys. 107 9271 [19] Tse J S, Ratcliffe C I, Powell B M, Sears V P and Handa H P 1997 J. Phys. Chem. 101 4491 [20] Tse J S, Shpakov V P, Belosludov V R, Trouw F and Handa Y P 2001 Europhys. Lett. 54 354 [21] Baumert J, Gutt C, Shpakov V P, Tse J S, Krisch M, Müller M, Requardt H, Klug D D, Janssen S and Press W 2003 Phys. Rev. B 68 174301 [22] Tse J S, Klug D D, Zhao J Y, Sturhahn W, Alp E E, Baumert J, Gutt C, Johnson M R and Press W 2005 Nat. Mater. 4 917 [23] Krivchikov A I, Korolyuk O A and Romantsova O O 2007 Low Temp. Phys. 33 612 [24] English N J 2008 Mol. Phys. 106 1887 [25] Cahill D G 1990 Rev. Sci. Instrum. 61 802 [26] Cahill D G, Katiyar M and Abelson J R 1994 Phys. Rev. B 50 6077 [27] Kumar P, Turner D and Sloan E D 2004 J. Geophys. Res. 109 01207 [28] Turner D J, Kumar P and Sloan E D 2005 Int. J. Thermophys. 26 1681 [29] Jain A and Goodson K E 2008 J. Heat Transfer 130 102402
[1]
. [J]. 中国物理快报, 2022, 39(12): 120502-.
[2]
. [J]. 中国物理快报, 2021, 38(9): 97502-097502.
[3]
. [J]. 中国物理快报, 2021, 38(3): 30501-.
[4]
. [J]. 中国物理快报, 2021, 38(2): 20501-.
[5]
. [J]. 中国物理快报, 2021, 38(2): 24201-.
[6]
. [J]. 中国物理快报, 2020, 37(12): 120501-.
[7]
. [J]. 中国物理快报, 2020, 37(12): 120502-.
[8]
. [J]. 中国物理快报, 2021, 38(1): 10503-.
[9]
. [J]. 中国物理快报, 2020, 37(8): 80502-080502.
[10]
. [J]. 中国物理快报, 2019, 36(6): 60501-.
[11]
. [J]. 中国物理快报, 2016, 33(04): 44401-044401.
[12]
. [J]. 中国物理快报, 2014, 31(1): 10501-010501.
[13]
. [J]. Chin. Phys. Lett., 2013, 30(1): 10501-010501.
[14]
Azad A. Siddiqui**;Syed Muhammad Jawwad Riaz;M. Akbar
. Foliation and the First Law of Black Hole Thermodynamics [J]. 中国物理快报, 2011, 28(5): 50401-050401.
[15]
LI Wei;Q. A. Wang;A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation [J]. 中国物理快报, 2008, 25(4): 1165-1167.