CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Gate Tunable Labyrinth Domain Structures in a van der Waals Itinerant Ferromagnet Cr$_{{7}}$Te$_{{8}}$ |
Kui Meng1†, Zeya Li1†, Yicheng Shen1†, Xiangyu Bi1, Junhao Rao1, Yuting Qian1, Zhansheng Gao2, Peng Chen1, Caiyu Qiu1, Feng Qin1*, Jinxiong Wu3, Feng Luo3, Junwei Huang1*, and Hongtao Yuan1* |
1National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210000, China 2Center for the Physics of Low-Dimensional Materials, Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China 3Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
|
|
Cite this article: |
Kui Meng, Zeya Li, Yicheng Shen et al 2024 Chin. Phys. Lett. 41 097501 |
|
|
Abstract Manipulating magnetic domain structure plays a key role in advanced spintronics devices. Theoretical rationale is that the labyrinthine domain structure, normally appearing in ferromagnetic thin films with strong magnetic anisotropy, shows a great potential to increase data storage density for designing magnetic nonvolatile memory and logic devices. However, an electrical control of labyrinthine domain structure remains elusive. Here, we demonstrate the gate-driven evolution of labyrinthine domain structures in an itinerant ferromagnet Cr$_{{7}}$Te$_{{8}}$. By combining electric transport measurements and micromagnetic finite difference simulations, we find that the hysteresis loop of anomalous Hall effect in Cr$_{{7}}$Te$_{{8}}$ samples shows distinct features corresponding to the generation of labyrinthine domain structures. The labyrinthine domain structures are found to be electrically tunable via Li-electrolyte gating, and such gate-driven evolution in Cr$_{{7}}$Te$_{{8}}$ originates from the reduction of the magnetic anisotropic energy with gating, revealed by our micromagnetic simulations. Our results on the gate control of anomalous Hall effect in an itinerant magnetic material provide an opportunity to understand the formation and evolution of labyrinthine domain structures, paving a new route towards electric-field driven spintronics.
|
|
Received: 11 June 2024
Published: 13 September 2024
|
|
|
|
|
|
[1] | Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, and Cowburn R P 2005 Science 309 1688 |
[2] | Chappert C, Fert A, and Van Dau F N 2007 Nat. Mater. 6 813 |
[3] | Lavrijsen R, Lee J H, Fernández-Pacheco A, Petit D C M C, Mansell R, and Cowburn R P 2013 Nature 493 647 |
[4] | Parkin S S P, Hayashi M, and Thomas L 2008 Science 320 190 |
[5] | Omari K A and Hayward T J 2014 Phys. Rev. Appl. 2 044001 |
[6] | Diegel M, Glathe S, Mattheis R, Scherzinger M, and Halder E 2009 IEEE Trans. Magn. 45 3792 |
[7] | Borie B, Kehlberger A, Wahrhusen J, Grimm H, and Kläui M 2017 Phys. Rev. Appl. 8 024017 |
[8] | Mattheis R, Diegel M, Hubner U, and Halder E 2006 IEEE Trans. Magn. 42 3297 |
[9] | Cui Q, Liang J, Zhu Y, Yao X, and Yang H 2023 Chin. Phys. Lett. 40 037502 |
[10] | Beach G S D, Nistor C, Knutson C, Tsoi M, and Erskine J L 2005 Nat. Mater. 4 741 |
[11] | Nakatani Y, Thiaville A, and Miltat J 2003 Nat. Mater. 2 521 |
[12] | Atkinson D, Allwood D A, Xiong G, Cooke M D, Faulkner C C, and Cowburn R P 2003 Nat. Mater. 2 85 |
[13] | Wang R, Shang Y X, Wu R, Yang J B, and Ji Y 2016 Chin. Phys. Lett. 33 047502 |
[14] | Liu J, Wang Z, Xu T, Zhou H, Zhao L, Je S G, Im M Y, Fang L, and Jiang W 2022 Chin. Phys. Lett. 39 017501 |
[15] | Hayashi M, Thomas L, Moriya R, Rettner C, and Parkin S S P 2008 Science 320 209 |
[16] | Chiba D, Yamada G, Koyama T, Ueda K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, and Ono T 2010 Appl. Phys. Express 3 073004 |
[17] | Yamaguchi A, Ono T, Nasu S, Miyake K, Mibu K, and Shinjo T 2004 Phys. Rev. Lett. 92 077205 |
[18] | Yamanouchi M, Chiba D, Matsukura F, and Ohno H 2004 Nature 428 539 |
[19] | Tatara G and Kohno H 2004 Phys. Rev. Lett. 92 086601 |
[20] | Vernier N, Allwood D A, Atkinson D, Cooke M D, and Cowburn R P 2004 Europhys. Lett. 65 526 |
[21] | Saitoh E, Miyajima H, Yamaoka T, and Tatara G 2004 Nature 432 203 |
[22] | Thiaville A, Nakatani Y, Miltat J, and Suzuki Y 2005 Europhys. Lett. 69 990 |
[23] | Kläui M, Vaz C A F, Bland J A C, Wernsdorfer W, Faini G, Cambril E, Heyderman L J, Nolting F, and Rüdiger U 2005 Phys. Rev. Lett. 94 106601 |
[24] | Thomas L, Hayashi M, Jiang X, Moriya R, Rettner C, and Parkin S S P 2006 Nature 443 197 |
[25] | Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, and Gaudin G 2011 Nat. Mater. 10 419 |
[26] | Jin Z, Song M, Fang H, Chen L, Chen J, and Tao Z 2022 Chin. Phys. Lett. 39 108502 |
[27] | Rushforth A W, Rowan-Robinson R, and Zemen J 2020 J. Phys. D 53 164001 |
[28] | Tang M, Huang J, Qin F, Zhai K, Ideue T, Li Z, Meng F, Nie A, Wu L, Bi X, Zhang C, Zhou L, Chen P, Qiu C, Tang P, Zhang H, Wan X, Wang L, Liu Z, Tian Y, Iwasa Y, and Yuan H 2023 Nat. Electron. 6 28 |
[29] | Meng K, Li Z, Gao Z, Bi X, Chen P, Qin F, Qiu C, Xu L, Huang J, Wu J, Luo F, and Yuan H 2024 InfoMat 6 e12524 |
[30] | Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y 2018 Nature 563 94 |
[31] | Hashimoto T and Yamaguchi M 1969 J. Phys. Soc. Jpn. 27 1121 |
[32] | Akram M and Nazar F M 1983 J. Mater. Sci. 18 423 |
[33] | Chen B W, Wu X K, Liao Z Y, Fu Z D, Xu B, Wang M, and Shen B 2024 arXiv:2404.00659 [cond-mat.mtrl-sci] |
[34] | Gao Z, Tang M, Huang J, Chen J, Ai W, Wu L, Dong X, Ma Y, Zhang Z, Zhang L, Du Y, Fu H, Yuan H, Wu J, and Luo F 2022 Nano Res. 15 3763 |
[35] | Miao W T, Zhen W L, Lu Z, Wang H N, Wang J, Niu Q, and Tian M L 2024 Chin. Phys. Lett. 41 067501 |
[36] | Liu J, Ding B, Liang J, Li X, Yao Y, and Wang W 2022 ACS Nano 16 13911 |
[37] | Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, and Van Waeyenberge B 2014 AIP Adv. 4 107133 |
[38] | Zhang H, Raftrey D, Chan Y T, Shao Y T, Chen R, Chen X, Huang X, Reichanadter J T, Dong K, Susarla S, Caretta L, Chen Z, Yao J, Fischer P, Neaton J B, Wu W, Muller D A, Birgeneau R J, and Ramesh R 2022 Sci. Adv. 8 eabm7103 |
[39] | Yang J, Zhu C, Deng Y, Tang B, and Liu Z 2023 iScience 26 106567 |
[40] | Bi X, Qiu C, Qin F, Huang J, and Yuan H 2023 Adv. Phys. Res. 2 2200106 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|