Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 097502    DOI: 10.1088/0256-307X/41/9/097502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Microscopic Magnetism of Nickel-Based Infinite-Layer Superconducting Parent Compounds $R$NiO$_{2}$ ($R$ = La, Nd): A μSR Study
Qiong Wu1, Ying Fu2, Le Wang3, Xuefeng Zhou2, Shanmin Wang2, Zihao Zhu1, Kaiwen Chen1, Chengyu Jiang1, Toni Shiroka4,5, Adrian D. Hillier6, Jia-Wei Mei2*, and Lei Shu1,7*
1State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200438, China
2Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
3Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
4Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
5Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
6ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, United Kingdom
7Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Cite this article:   
Qiong Wu, Ying Fu, Le Wang et al  2024 Chin. Phys. Lett. 41 097502
Download: PDF(5485KB)   PDF(mobile)(5525KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using muon spin relaxation (µSR) measurements, we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors $R$NiO$_{2}$ ($R$ = La, Nd). In either compound, the zero-field µSR spectra down to the lowest measured temperature reveal no long-range magnetic order. In LaNiO$_{2}$, short-range spin correlations appear below $T=150$ K, and spins fully freeze below $T \sim 10$ K. NdNiO$_{2}$ exhibits a more complex spin dynamics driven by the Nd $4f$ and Ni $3d$ electron spin fluctuations. Further, it shows features suggesting the proximity to a spin-glass state occurring below $T=5$ K. In both compounds, the spin behavior with temperature is further confirmed by longitudinal-field µSR measurements. These results provide new insight into the magnetism of the parent compounds of the superconducting nickelates, crucial to understanding the microscopic origin of their superconductivity.
Received: 11 June 2024      Editors' Suggestion Published: 11 September 2024
PACS:  75.50.Lk (Spin glasses and other random magnets)  
  75.40.Gb (Dynamic properties?)  
  76.75.+i (Muon spin rotation and relaxation)  
  74.72.Cj (Insulating parent compounds)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/097502       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/097502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiong Wu
Ying Fu
Le Wang
Xuefeng Zhou
Shanmin Wang
Zihao Zhu
Kaiwen Chen
Chengyu Jiang
Toni Shiroka
Adrian D. Hillier
Jia-Wei Mei
and Lei Shu
[1] Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
[2] Chu C W, Hor P H, Meng R L, Gao L, Huang Z J, and Wang Y Q 1987 Phys. Rev. Lett. 58 405
[3] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, and Chu C W 1987 Phys. Rev. Lett. 58 908
[4] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, and Lichtenberg F 1994 Nature 372 532
[5] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[6] Kamihara Y, Watanabe T, Hirano M, and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[7] Anisimov V I, Bukhvalov D, and Rice T M 1999 Phys. Rev. B 59 7901
[8] Hansmann P, Yang X P, Toschi A, Khaliullin G, Andersen O K, and Held K 2009 Phys. Rev. Lett. 103 016401
[9] Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624
[10] Zeng S, Tang C S, Yin X, Li C, Li M, Huang Z, Hu J, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D, Yang P, Pennycook S J, Wee A T S, and Ariando A 2020 Phys. Rev. Lett. 125 147003
[11] Osada M, Wang B Y, Goodge B H, Harvey S P, Lee K, Li D, Kourkoutis L F, and Hwang H Y 2021 Adv. Mater. 33 2104083
[12] Zeng S, Li C, Chow L E, Cao Y, Zhang Z, Tang C S, Yin X, Lim Z S, Hu J, Yang P, and Ariando A 2022 Sci. Adv. 8 eabl9927
[13] Pan G A, Segedin D F, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Córdova C D, N'Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, and Mundy J A 2022 Nat. Mater. 21 160
[14] Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J, and Cheng J G 2022 Nat. Commun. 13 4367
[15] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, and Wang M 2023 Nature 621 493
[16] Li Q, He C P, Si J, Zhu X Y, Zhang Y, and Wen H H 2020 Commun. Mater. 1 16
[17] Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F, and Phelan D 2020 Phys. Rev. Mater. 4 084409
[18] Zhang H, Jin L P, Wang S M, Xi B, Shi X Q, Ye F, and Mei J W 2020 Phys. Rev. Res. 2 013214
[19] Botana A S and Norman M R 2020 Phys. Rev. X 10 011024
[20] Puphal P, Wu Y M, Fürsich K, Lee H, Pakdaman M, Bruin J A N, Nuss J, Suyolcu Y E, van Aken P A, Keimer B, Isobe M, and Hepting M 2021 Sci. Adv. 7 eabl8091
[21] Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, and Feng D L 2024 Natl. Sci. Rev. 11 nwae194
[22] Lin J Q, Villar Arribi P, Fabbris G, Botana A S, Meyers D, Miao H, Shen Y, Mazzone D G, Feng J, Chiuzbăian S G, Nag A, Walters A C, García-Fernández M, Zhou K J, Pelliciari J, Jarrige I, Freeland J W, Zhang J J, Mitchell J F, Bisogni V, Liu X, Norman M R, and Dean M P M 2021 Phys. Rev. Lett. 126 087001
[23] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[24] Jesche A, Nitsche F, Probst S, Doert T, Müller P, and Ruck M 2012 Phys. Rev. B 86 134511
[25] Dai P C 2015 Rev. Mod. Phys. 87 855
[26] Gu Y H, Zhu S C, Wang X X, Hu J P, and Chen H H 2020 Commun. Phys. 3 84
[27] Choi M Y, Lee K W, and Pickett W E 2020 Phys. Rev. B 101 020503
[28] Hayward M A, Green M A, Rosseinsky M J, and Sloan J 1999 J. Am. Chem. Soc. 121 8843
[29] Hayward M A and Rosseinsky M J 2003 Solid State Sci. 5 839
[30] Fu Y, Wang L, Cheng H, Pei S H, Zhou X F, Chen J, Wang S H, Zhao R, Jiang W R, Liu C, Huang M Y, Wang X W, Zhao Y S, Yu D P, Ye F, Wang S M, and Mei J W 2020 arXiv:1911.03177 [cond-mat.supr-con]
[31] Zhao D, Zhou Y B, Fu Y, Wang L, Zhou X F, Cheng H, Li J, Song D W, Li S J, Kang B L, Zheng L X, Nie L P, Wu Z M, Shan M, Yu F H, Ying J J, Wang S M, Mei J W, Wu T, and Chen X H 2021 Phys. Rev. Lett. 126 197001
[32] Chen D C, Jiang P H, Si L, Lu Y, and Zhong Z C 2022 Phys. Rev. B 106 045105
[33] Fowlie J, Hadjimichael M, Martins M M, Li D F, Osada M, Wang B Y, Lee K, Lee Y, Salman Z, Prokscha T, Triscone J M, Hwang H Y, and Suter A 2022 Nat. Phys. 18 1043
[34] Zhou X R, Qin P X, Feng Z X, Yan H, Wang X N, Chen H Y, Meng Z A, and Liu Z Q 2022 Mater. Today 55 170
[35] Cui Y, Li C, Li Q, Zhu X Y, Hu Z, Yang Y F, Zhang J S, Yu R, Wen H H, and Yu W Q 2021 Chin. Phys. Lett. 38 067401
[36] Hayano R S, Uemura Y J, Imazato J, Nishida N, Yamazaki T, and Kubo R 1979 Phys. Rev. B 20 850
[37] Uemura Y J, Yamazaki T, Harshman D R, Senba M, and Ansaldo E J 1985 Phys. Rev. B 31 546
[38]Yaouanc A and de R'eotier P D 2011 Muon Spin Rotation, Relaxation and Resonance (Oxford: Oxford University Press)
[39] Hillier A D, Blundell S J, McKenzie I, Umegaki I, Shu L, Wright J A, Prokscha T, Bert F, Shimomura K, Berlie A, Alberto H, and Watanabe I 2022 Nat. Rev. Methods Primers 2 5
[40]Blundell S J, Renzi R D, Lancaster T, and Pratt F L 2021 Muon Spectroscopy: An Introduction. (Oxford: Oxford University Press) p 11
[41] Vassiliou J K, Hornbostel M, Ziebarth R, and Disalvo F J 1989 J. Solid State Chem. 81 208
[42] Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, and Shimakawa Y 2009 Appl. Phys. Lett. 94 082102
[43] Suter A and Wojek B M 2012 Phys. Procedia 30 69
[44] Arnold O, Bilheux J C, Borreguero J M, Buts A, Campbell S I, Chapon L, Doucet M, Draper N, Ferraz Leal R, Gigg M A, Lynch V E, Markvardsen A, Mikkelson D J, Mikkelson R L, Miller R, Palmen K, Parker P, Passos G, Perring T G, Peterson P F, Ren S, Reuter M A, Savici A T, Taylor J W, Taylor R J, Tolchenov R, Zhou W, and Zikovsky J 2014 Nucl. Instrum. Methods Phys. Res. Sec. A 764 156
[45] Ortiz R A, Puphal P, Klett M, Hotz F, Kremer R K, Trepka H, Hemmida M, von Nidda H A K, Isobe M, Khasanov R, Luetkens H, Hansmann P, Keimer B, Schäfer T, and Hepting M 2022 Phys. Rev. Res. 4 023093
[46] Campbell I A, Amato A, Gygax F N, Herlach D, Schenck A, Cywinski R, and Kilcoyne S H 1994 Phys. Rev. Lett. 72 1291
[47] Johnston D C 2006 Phys. Rev. B 74 184430
[48] Huangfu S, Guguchia Z, Shang T, Lin H, Liu H L, Zhang X F, Luetkens H, and Schilling A 2023 Phys. Rev. B 108 014410
[49] Lord J S 2005 J. Phys.: Conf. Ser. 17 81
[50] Chen Q, Verrier A, Ziat D, Clune A J, Rouane R, Bazier-Matte X, Wang G, Calder S, Taddei K M, dela Cruz C R, Kolesnikov A I, Ma J, Cheng J G, Liu Z, Quilliam J A, Musfeldt J L, Zhou H D, and Aczel A A 2020 Phys. Rev. Mater. 4 064409
[51] Lin H, Gawryluk D J, Klein Y M, Huangfu S, Pomjakushina E, von Rohr F, and Schilling A 2022 New J. Phys. 24 013022
[52] Kraftmakher Y 1997 Eur. J. Phys. 18 448
[53] Tan C, Ying T P, Ding Z F, Zhang J, MacLaughlin D E, Bernal O O, Ho P C, Huang K, Watanabe I, Li S Y, and Shu L 2018 Phys. Rev. B 97 174524
[54] Frandsen B A, Read C, Stevens J, Walker C, Christiansen M, Harrison R G, and Chesnel K 2021 Phys. Rev. Mater. 5 054411
[55] Keren A, Mendels P, Campbell I A, and Lord J 1996 Phys. Rev. Lett. 77 1386
[56] Chatterji T, Henggeler W, and Delmas C 2005 J. Phys.: Condens. Matter 17 1341
[57] Ogielski A T 1985 Phys. Rev. B 32 7384
[58] Phillips J C 1996 Rep. Prog. Phys. 59 1133
[59] Huangfu S, Guguchia Z, Cheptiakov D, Zhang X F, Luetkens H, Gawryluk D J, Shang T, von Rohr F O, and Schilling A 2020 Phys. Rev. B 102 054423
[60] Wang B Y, Lee K, and Goodge B H 2024 Annu. Rev. Condens. Matter Phys. 15 305
[61] Zhang R Q, Lane C, Singh B, Nokelainen J, Barbiellini B, Markiewicz R S, Bansil A, and Sun J W 2021 Commun. Phys. 4 118
[62] Klauss H H, Baabe D, Mienert D, Birke M, Luetkens H, Litterst F J, Hücker M, Büchner B, and Cheong S W 2001 Hyperfine Interact. 136–137 711
[63] Eremin M and Rigamonti A 2002 Phys. Rev. Lett. 88 037002
[64] Panagopoulos C, Petrovic A P, Hillier A D, Tallon J L, Scott C A, and Rainford B D 2004 Phys. Rev. B 69 144510
[65] Hoshino S and Werner P 2015 Phys. Rev. Lett. 115 247001
[66] Werner P, Hoshino S, and Shinaoka H 2016 Phys. Rev. B 94 245134
[67] Werner P and Hoshino S 2020 Phys. Rev. B 101 041104
[68] Vaknin D, Sinha S K, Moncton D E, Johnston D C, Newsam J M, Safinya C R, and King H E 1987 Phys. Rev. Lett. 58 2802
[69] Chou F C, Belk N R, Kastner M A, Birgeneau R J, and Aharony A 1995 Phys. Rev. Lett. 75 2204
[70] Niedermayer C, Bernhard C, Blasius T, Golnik A, Moodenbaugh A, and Budnick J I 1998 Phys. Rev. Lett. 80 3843
[71] Sundar S, Azari N, Goeks M R, Gheidi S, Abedi M, Yakovlev M, Dunsiger S R, Wilkinson J M, Blundell S J, Metz T E, Hayes I M, Saha S R, Lee S, Woods A J, Movshovich R, Thomas S M, Butch N P, Rosa P F S, Paglione J, and Sonier J E 2023 Commun. Phys. 6 24
[72] Dioguardi A P, Crocker J, Shockley A C, Lin C H, Shirer K R, Nisson D M, Lawson M M, apRoberts-Warren N, Canfield P C, Bud'ko S L, Ran S, and Curro N J 2013 Phys. Rev. Lett. 111 207201
[73] Lu X Y, Tam D W, Zhang C L, Luo H Q, Wang M, Zhang R, Harriger L W, Keller T, Keimer B, Regnault L P, Maier T A, and Dai P C 2014 Phys. Rev. B 90 024509
[74] Bandyopadhyay S, Adhikary P, Das T, Dasgupta I, and Saha-Dasgupta T 2020 Phys. Rev. B 102 220502
[75] Lu H, Rossi M, Nag A, Osada M, Li D F, Lee K, Wang B Y, Garcia-Fernandez M, Agrestini S, Shen Z X, Been E M, Moritz B, Devereaux T P, Zaanen J, Hwang H Y, Zhou K J, and Lee W S 2021 Science 373 213
[76] Kang B, Kim H, Zhu Q, and Park C H 2023 Cell Rep. Phys. Sci. 4 101325
[77] Lane C, Zhang R Q, Barbiellini B, Markiewicz R S, Bansil A, Sun J W, and Zhu J X 2023 Commun. Phys. 6 90
[78] Sahinovic A, Geisler B, and Pentcheva R 2023 Phys. Rev. Mater. 7 114803
Related articles from Frontiers Journals
[1] Yu-Jie Yuan, Cheng-He Li, Shang-Jie Tian, He-Chang Lei, Xiao Zhang. Tuning of Magnetic Properties of $\alpha$-RuCl$_{3}$ Single Crystal by Cr Doping[J]. Chin. Phys. Lett., 2020, 37(6): 097502
[2] Yu-Jie Yuan, Cheng-He Li, Shang-Jie Tian, He-Chang Lei, Xiao Zhang. Tuning of Magnetic Properties of $\alpha$-RuCl$_{3}$ Single Crystal by Cr Doping *[J]. Chin. Phys. Lett., 0, (): 097502
[3] Chengyue Xiong, Cheng Chen, Wen Sun, Ziyao Lu, Hongming Mou, Xiaozhong Zhang. Magnetization of Co-Fe-Ta-B-O Amorphous Thin Films[J]. Chin. Phys. Lett., 2019, 36(7): 097502
[4] DENG Yi-Bo, GU Qiang. Berezinskii–Kosterlitz–Thouless Transition in a Two-Dimensional Random-Bond XY Model on a Square Lattice[J]. Chin. Phys. Lett., 2014, 31(2): 097502
[5] WU Bai-Mei, M. Ausloos, DU Ying-Lei, ZHENG Wei-Hua, LI Bo, J. F. Fagnard, Ph. Vanderbemden. Spin Glass Behaviour and Spin-Dependent Scattering in La0.7Ca0.3Mn0.9Cr0.1Ox Perovskites[J]. Chin. Phys. Lett., 2005, 22(3): 097502
[6] SHANG Yu-Min, CHENG Li-Min, YAO Kai-Lun. A Spin Glass Model with Vibrations of Crystal Lattices[J]. Chin. Phys. Lett., 2005, 22(1): 097502
[7] SHANG Yu-Min, YAO Kai-Lun. Translational Invariance in Phase Diagram of S=1/2, 3/2 Spin Glass Systems[J]. Chin. Phys. Lett., 2005, 22(1): 097502
[8] CHEN Wei-Ran, ZHANG Fu-Chang, MIAO Jun, XU Bo, DONG Xiao-Li, CAO Li-Xin, QIU Xiang-Gang, ZHAO Bai-Ru. Full Aging in Spin Glass State of Y0.90Na0.10MnO3[J]. Chin. Phys. Lett., 2004, 21(10): 097502
[9] SHANG Yu-Min, YAO Kai-Lun. Infinite-Range Quantum Dzyaloshinskii-Moriya Spin Glass Model[J]. Chin. Phys. Lett., 2003, 20(11): 097502
[10] K. Afif, A. Benyoussef, J. Diouri . Auto-correlation Effects on the sp3-d Exchange Interaction in Cd1-xMnxTe/CdTe Multilayers[J]. Chin. Phys. Lett., 2002, 19(11): 097502
[11] K. Afif, A. Benyoussef, M. Hamedoun. Monte Carlo Simulations of Mixed Highly Frustrated Systems[J]. Chin. Phys. Lett., 2002, 19(8): 097502
[12] K. Afif, A. Benyoussef, M. Hamedoun. Universal Class of Criticality of Diluted Strongly Frustrated Systems[J]. Chin. Phys. Lett., 2002, 19(3): 097502
[13] SHANG Yu-Min, YAO Kai-Lun. Properties of Quantum XY Spin Glass in Longitudinal Field[J]. Chin. Phys. Lett., 2001, 18(4): 097502
[14] WANG Jing-hua, CHEN Ting-yong, WU Jian-hua, DAI Dao-sheng, NIE Jia-cai, ZHAO Bai-ru. Colossal Magnetoresistance of Polycrystalline (La0.7Tb0.3)2/3Cal/3MnO3 at Low Drive Field[J]. Chin. Phys. Lett., 1999, 16(8): 097502
[15] SHANG Yu-min, YAO Kai-un,. Quantum XY Spin Glass Model with Longitudinal Ferromagnetic Coupling[J]. Chin. Phys. Lett., 1999, 16(5): 097502
Viewed
Full text


Abstract