CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Microscopic Magnetism of Nickel-Based Infinite-Layer Superconducting Parent Compounds $R$NiO$_{2}$ ($R$ = La, Nd): A μSR Study |
Qiong Wu1, Ying Fu2, Le Wang3, Xuefeng Zhou2, Shanmin Wang2, Zihao Zhu1, Kaiwen Chen1, Chengyu Jiang1, Toni Shiroka4,5, Adrian D. Hillier6, Jia-Wei Mei2*, and Lei Shu1,7* |
1State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200438, China 2Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China 3Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China 4Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland 5Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland 6ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, United Kingdom 7Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
|
|
Cite this article: |
Qiong Wu, Ying Fu, Le Wang et al 2024 Chin. Phys. Lett. 41 097502 |
|
|
Abstract By using muon spin relaxation (µSR) measurements, we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors $R$NiO$_{2}$ ($R$ = La, Nd). In either compound, the zero-field µSR spectra down to the lowest measured temperature reveal no long-range magnetic order. In LaNiO$_{2}$, short-range spin correlations appear below $T=150$ K, and spins fully freeze below $T \sim 10$ K. NdNiO$_{2}$ exhibits a more complex spin dynamics driven by the Nd $4f$ and Ni $3d$ electron spin fluctuations. Further, it shows features suggesting the proximity to a spin-glass state occurring below $T=5$ K. In both compounds, the spin behavior with temperature is further confirmed by longitudinal-field µSR measurements. These results provide new insight into the magnetism of the parent compounds of the superconducting nickelates, crucial to understanding the microscopic origin of their superconductivity.
|
|
Received: 11 June 2024
Editors' Suggestion
Published: 11 September 2024
|
|
PACS: |
75.50.Lk
|
(Spin glasses and other random magnets)
|
|
75.40.Gb
|
(Dynamic properties?)
|
|
76.75.+i
|
(Muon spin rotation and relaxation)
|
|
74.72.Cj
|
(Insulating parent compounds)
|
|
|
|
|
[1] | Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189 |
[2] | Chu C W, Hor P H, Meng R L, Gao L, Huang Z J, and Wang Y Q 1987 Phys. Rev. Lett. 58 405 |
[3] | Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, and Chu C W 1987 Phys. Rev. Lett. 58 908 |
[4] | Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, and Lichtenberg F 1994 Nature 372 532 |
[5] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 |
[6] | Kamihara Y, Watanabe T, Hirano M, and Hosono H 2008 J. Am. Chem. Soc. 130 3296 |
[7] | Anisimov V I, Bukhvalov D, and Rice T M 1999 Phys. Rev. B 59 7901 |
[8] | Hansmann P, Yang X P, Toschi A, Khaliullin G, Andersen O K, and Held K 2009 Phys. Rev. Lett. 103 016401 |
[9] | Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624 |
[10] | Zeng S, Tang C S, Yin X, Li C, Li M, Huang Z, Hu J, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D, Yang P, Pennycook S J, Wee A T S, and Ariando A 2020 Phys. Rev. Lett. 125 147003 |
[11] | Osada M, Wang B Y, Goodge B H, Harvey S P, Lee K, Li D, Kourkoutis L F, and Hwang H Y 2021 Adv. Mater. 33 2104083 |
[12] | Zeng S, Li C, Chow L E, Cao Y, Zhang Z, Tang C S, Yin X, Lim Z S, Hu J, Yang P, and Ariando A 2022 Sci. Adv. 8 eabl9927 |
[13] | Pan G A, Segedin D F, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Córdova C D, N'Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, and Mundy J A 2022 Nat. Mater. 21 160 |
[14] | Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J, and Cheng J G 2022 Nat. Commun. 13 4367 |
[15] | Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, and Wang M 2023 Nature 621 493 |
[16] | Li Q, He C P, Si J, Zhu X Y, Zhang Y, and Wen H H 2020 Commun. Mater. 1 16 |
[17] | Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F, and Phelan D 2020 Phys. Rev. Mater. 4 084409 |
[18] | Zhang H, Jin L P, Wang S M, Xi B, Shi X Q, Ye F, and Mei J W 2020 Phys. Rev. Res. 2 013214 |
[19] | Botana A S and Norman M R 2020 Phys. Rev. X 10 011024 |
[20] | Puphal P, Wu Y M, Fürsich K, Lee H, Pakdaman M, Bruin J A N, Nuss J, Suyolcu Y E, van Aken P A, Keimer B, Isobe M, and Hepting M 2021 Sci. Adv. 7 eabl8091 |
[21] | Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, and Feng D L 2024 Natl. Sci. Rev. 11 nwae194 |
[22] | Lin J Q, Villar Arribi P, Fabbris G, Botana A S, Meyers D, Miao H, Shen Y, Mazzone D G, Feng J, Chiuzbăian S G, Nag A, Walters A C, García-Fernández M, Zhou K J, Pelliciari J, Jarrige I, Freeland J W, Zhang J J, Mitchell J F, Bisogni V, Liu X, Norman M R, and Dean M P M 2021 Phys. Rev. Lett. 126 087001 |
[23] | Stewart G R 2011 Rev. Mod. Phys. 83 1589 |
[24] | Jesche A, Nitsche F, Probst S, Doert T, Müller P, and Ruck M 2012 Phys. Rev. B 86 134511 |
[25] | Dai P C 2015 Rev. Mod. Phys. 87 855 |
[26] | Gu Y H, Zhu S C, Wang X X, Hu J P, and Chen H H 2020 Commun. Phys. 3 84 |
[27] | Choi M Y, Lee K W, and Pickett W E 2020 Phys. Rev. B 101 020503 |
[28] | Hayward M A, Green M A, Rosseinsky M J, and Sloan J 1999 J. Am. Chem. Soc. 121 8843 |
[29] | Hayward M A and Rosseinsky M J 2003 Solid State Sci. 5 839 |
[30] | Fu Y, Wang L, Cheng H, Pei S H, Zhou X F, Chen J, Wang S H, Zhao R, Jiang W R, Liu C, Huang M Y, Wang X W, Zhao Y S, Yu D P, Ye F, Wang S M, and Mei J W 2020 arXiv:1911.03177 [cond-mat.supr-con] |
[31] | Zhao D, Zhou Y B, Fu Y, Wang L, Zhou X F, Cheng H, Li J, Song D W, Li S J, Kang B L, Zheng L X, Nie L P, Wu Z M, Shan M, Yu F H, Ying J J, Wang S M, Mei J W, Wu T, and Chen X H 2021 Phys. Rev. Lett. 126 197001 |
[32] | Chen D C, Jiang P H, Si L, Lu Y, and Zhong Z C 2022 Phys. Rev. B 106 045105 |
[33] | Fowlie J, Hadjimichael M, Martins M M, Li D F, Osada M, Wang B Y, Lee K, Lee Y, Salman Z, Prokscha T, Triscone J M, Hwang H Y, and Suter A 2022 Nat. Phys. 18 1043 |
[34] | Zhou X R, Qin P X, Feng Z X, Yan H, Wang X N, Chen H Y, Meng Z A, and Liu Z Q 2022 Mater. Today 55 170 |
[35] | Cui Y, Li C, Li Q, Zhu X Y, Hu Z, Yang Y F, Zhang J S, Yu R, Wen H H, and Yu W Q 2021 Chin. Phys. Lett. 38 067401 |
[36] | Hayano R S, Uemura Y J, Imazato J, Nishida N, Yamazaki T, and Kubo R 1979 Phys. Rev. B 20 850 |
[37] | Uemura Y J, Yamazaki T, Harshman D R, Senba M, and Ansaldo E J 1985 Phys. Rev. B 31 546 |
[38] | Yaouanc A and de R'eotier P D 2011 Muon Spin Rotation, Relaxation and Resonance (Oxford: Oxford University Press) |
[39] | Hillier A D, Blundell S J, McKenzie I, Umegaki I, Shu L, Wright J A, Prokscha T, Bert F, Shimomura K, Berlie A, Alberto H, and Watanabe I 2022 Nat. Rev. Methods Primers 2 5 |
[40] | Blundell S J, Renzi R D, Lancaster T, and Pratt F L 2021 Muon Spectroscopy: An Introduction. (Oxford: Oxford University Press) p 11 |
[41] | Vassiliou J K, Hornbostel M, Ziebarth R, and Disalvo F J 1989 J. Solid State Chem. 81 208 |
[42] | Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, and Shimakawa Y 2009 Appl. Phys. Lett. 94 082102 |
[43] | Suter A and Wojek B M 2012 Phys. Procedia 30 69 |
[44] | Arnold O, Bilheux J C, Borreguero J M, Buts A, Campbell S I, Chapon L, Doucet M, Draper N, Ferraz Leal R, Gigg M A, Lynch V E, Markvardsen A, Mikkelson D J, Mikkelson R L, Miller R, Palmen K, Parker P, Passos G, Perring T G, Peterson P F, Ren S, Reuter M A, Savici A T, Taylor J W, Taylor R J, Tolchenov R, Zhou W, and Zikovsky J 2014 Nucl. Instrum. Methods Phys. Res. Sec. A 764 156 |
[45] | Ortiz R A, Puphal P, Klett M, Hotz F, Kremer R K, Trepka H, Hemmida M, von Nidda H A K, Isobe M, Khasanov R, Luetkens H, Hansmann P, Keimer B, Schäfer T, and Hepting M 2022 Phys. Rev. Res. 4 023093 |
[46] | Campbell I A, Amato A, Gygax F N, Herlach D, Schenck A, Cywinski R, and Kilcoyne S H 1994 Phys. Rev. Lett. 72 1291 |
[47] | Johnston D C 2006 Phys. Rev. B 74 184430 |
[48] | Huangfu S, Guguchia Z, Shang T, Lin H, Liu H L, Zhang X F, Luetkens H, and Schilling A 2023 Phys. Rev. B 108 014410 |
[49] | Lord J S 2005 J. Phys.: Conf. Ser. 17 81 |
[50] | Chen Q, Verrier A, Ziat D, Clune A J, Rouane R, Bazier-Matte X, Wang G, Calder S, Taddei K M, dela Cruz C R, Kolesnikov A I, Ma J, Cheng J G, Liu Z, Quilliam J A, Musfeldt J L, Zhou H D, and Aczel A A 2020 Phys. Rev. Mater. 4 064409 |
[51] | Lin H, Gawryluk D J, Klein Y M, Huangfu S, Pomjakushina E, von Rohr F, and Schilling A 2022 New J. Phys. 24 013022 |
[52] | Kraftmakher Y 1997 Eur. J. Phys. 18 448 |
[53] | Tan C, Ying T P, Ding Z F, Zhang J, MacLaughlin D E, Bernal O O, Ho P C, Huang K, Watanabe I, Li S Y, and Shu L 2018 Phys. Rev. B 97 174524 |
[54] | Frandsen B A, Read C, Stevens J, Walker C, Christiansen M, Harrison R G, and Chesnel K 2021 Phys. Rev. Mater. 5 054411 |
[55] | Keren A, Mendels P, Campbell I A, and Lord J 1996 Phys. Rev. Lett. 77 1386 |
[56] | Chatterji T, Henggeler W, and Delmas C 2005 J. Phys.: Condens. Matter 17 1341 |
[57] | Ogielski A T 1985 Phys. Rev. B 32 7384 |
[58] | Phillips J C 1996 Rep. Prog. Phys. 59 1133 |
[59] | Huangfu S, Guguchia Z, Cheptiakov D, Zhang X F, Luetkens H, Gawryluk D J, Shang T, von Rohr F O, and Schilling A 2020 Phys. Rev. B 102 054423 |
[60] | Wang B Y, Lee K, and Goodge B H 2024 Annu. Rev. Condens. Matter Phys. 15 305 |
[61] | Zhang R Q, Lane C, Singh B, Nokelainen J, Barbiellini B, Markiewicz R S, Bansil A, and Sun J W 2021 Commun. Phys. 4 118 |
[62] | Klauss H H, Baabe D, Mienert D, Birke M, Luetkens H, Litterst F J, Hücker M, Büchner B, and Cheong S W 2001 Hyperfine Interact. 136–137 711 |
[63] | Eremin M and Rigamonti A 2002 Phys. Rev. Lett. 88 037002 |
[64] | Panagopoulos C, Petrovic A P, Hillier A D, Tallon J L, Scott C A, and Rainford B D 2004 Phys. Rev. B 69 144510 |
[65] | Hoshino S and Werner P 2015 Phys. Rev. Lett. 115 247001 |
[66] | Werner P, Hoshino S, and Shinaoka H 2016 Phys. Rev. B 94 245134 |
[67] | Werner P and Hoshino S 2020 Phys. Rev. B 101 041104 |
[68] | Vaknin D, Sinha S K, Moncton D E, Johnston D C, Newsam J M, Safinya C R, and King H E 1987 Phys. Rev. Lett. 58 2802 |
[69] | Chou F C, Belk N R, Kastner M A, Birgeneau R J, and Aharony A 1995 Phys. Rev. Lett. 75 2204 |
[70] | Niedermayer C, Bernhard C, Blasius T, Golnik A, Moodenbaugh A, and Budnick J I 1998 Phys. Rev. Lett. 80 3843 |
[71] | Sundar S, Azari N, Goeks M R, Gheidi S, Abedi M, Yakovlev M, Dunsiger S R, Wilkinson J M, Blundell S J, Metz T E, Hayes I M, Saha S R, Lee S, Woods A J, Movshovich R, Thomas S M, Butch N P, Rosa P F S, Paglione J, and Sonier J E 2023 Commun. Phys. 6 24 |
[72] | Dioguardi A P, Crocker J, Shockley A C, Lin C H, Shirer K R, Nisson D M, Lawson M M, apRoberts-Warren N, Canfield P C, Bud'ko S L, Ran S, and Curro N J 2013 Phys. Rev. Lett. 111 207201 |
[73] | Lu X Y, Tam D W, Zhang C L, Luo H Q, Wang M, Zhang R, Harriger L W, Keller T, Keimer B, Regnault L P, Maier T A, and Dai P C 2014 Phys. Rev. B 90 024509 |
[74] | Bandyopadhyay S, Adhikary P, Das T, Dasgupta I, and Saha-Dasgupta T 2020 Phys. Rev. B 102 220502 |
[75] | Lu H, Rossi M, Nag A, Osada M, Li D F, Lee K, Wang B Y, Garcia-Fernandez M, Agrestini S, Shen Z X, Been E M, Moritz B, Devereaux T P, Zaanen J, Hwang H Y, Zhou K J, and Lee W S 2021 Science 373 213 |
[76] | Kang B, Kim H, Zhu Q, and Park C H 2023 Cell Rep. Phys. Sci. 4 101325 |
[77] | Lane C, Zhang R Q, Barbiellini B, Markiewicz R S, Bansil A, Sun J W, and Zhu J X 2023 Commun. Phys. 6 90 |
[78] | Sahinovic A, Geisler B, and Pentcheva R 2023 Phys. Rev. Mater. 7 114803 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|