Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 097503    DOI: 10.1088/0256-307X/41/9/097503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Finite Temperature Magnetism in the Triangular Lattice Antiferromagnet KErTe$_{2}$
Weiwei Liu1,2†, Zheng Zhang2†*, Dayu Yan2, Jianshu Li2, Zhitao Zhang3, Jianting Ji2, Feng Jin2, Youguo Shi2, and Qingming Zhang2,4
1Department of Physics, Renmin University of China, Beijing 100872, China
2Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
4School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Cite this article:   
Weiwei Liu, Zheng Zhang, Dayu Yan et al  2024 Chin. Phys. Lett. 41 097503
Download: PDF(1450KB)   PDF(mobile)(1507KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract After the discovery of the ARECh$_{2}$ (A = alkali or monovalent ions, RE = rare-earth, Ch = chalcogen) triangular lattice quantum spin liquid (QSL) family, a series of its oxide, sulfide, and selenide counterparts has been consistently reported and extensively investigated. While KErTe$_{2}$ represents the initial synthesized telluride member, preserving its triangular spin lattice, it was anticipated that the substantial tellurium ions could impart more pronounced magnetic attributes and electronic structures to this material class. This study delves into the magnetism of KErTe$_{2}$ at finite temperatures through magnetization and electron spin resonance (ESR) measurements. Based on the angular momentum $\hat{J}$ after spin-orbit coupling (SOC) and symmetry analysis, we obtain the magnetic effective Hamiltonian to describe the magnetism of Er$^{3+}$ in $R\bar{3}m$ space group. Applying the mean-field approximation to the Hamiltonian, we can simulate the magnetization and magnetic heat capacity of KErTe$_{2}$ in paramagnetic state and determine the crystalline electric field (CEF) parameters and partial exchange interactions. The relatively narrow energy gaps between the CEF ground state and excited states exert a significant influence on the magnetism. For example, small CEF excitations can result in a significant broadening of the ESR linewidth at 2 K. For the fitted exchange interactions, although the values are small, given a large angular momentum $J=15/2$ after SOC, they still have a noticeable effect at finite temperatures. Notably, the heat capacity data under different magnetic fields along the $c$ axis direction also roughly match our calculated results, further validating the reliability of our analytical approach. These derived parameters serve as crucial tools for future investigations into the ground state magnetism of KErTe$_{2}$. The findings presented herein lay a foundation for exploration of the intricate magnetism within the triangular-lattice delafossite family.
Received: 11 June 2024      Published: 19 September 2024
PACS:  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena)  
  75.30.Et (Exchange and superexchange interactions)  
  75.30.Gw (Magnetic anisotropy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/097503       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/097503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Weiwei Liu
Zheng Zhang
Dayu Yan
Jianshu Li
Zhitao Zhang
Jianting Ji
Feng Jin
Youguo Shi
and Qingming Zhang
[1] Anderson P W 1973 Mater. Res. Bull. 8 153
[2] Anderson P W 1987 Science 235 1196
[3] Liu W W, Zhang Z, Ji J T, Liu Y X, Li J S, Wang X Q, Lei H C, Chen G, and Zhang Q M 2018 Chin. Phys. Lett. 35 117501
[4] Bordelon M M, Kenney E, Liu C X, Hogan T, Posthuma L, Kavand M, Lyu Y Q, Sherwin M, Butch N P, Brown C, Graf M J, Balents L, and Wilson S D 2019 Nat. Phys. 15 1058
[5] Ding L, Manuel P, Bachus S, Grußler F, Gegenwart P, Singleton J, Johnson R D, Walker H C, Adroja D T, Hillier A D, and Tsirlin A A 2019 Phys. Rev. B 100 144432
[6] Ranjith K M, Dmytriieva D, Khim S, Sichelschmidt J, Luther S, Ehlers D, Yasuoka H, Wosnitza J, Tsirlin A A, Kühne H, and Baenitz M 2019 Phys. Rev. B 99 180401
[7] Baenitz M, Schlender P, Sichelschmidt J, Onykiienko Y A, Zangeneh Z, Ranjith K M, Sarkar R, Hozoi L, Walker H C, Orain J C, Yasuoka H, van den Brink J, Klauss H H, Inosov D S, and Doert T 2018 Phys. Rev. B 98 220409
[8] Sarkar R, Schlender P, Grinenko V, Haeussler E, Baker P J, Doert T, and Klauss H H 2019 Phys. Rev. B 100 241116
[9] Zhang Z, Ma X L, Li J S, Wang G H, Adroja D T, Perring T P, Liu W W, Jin F, Ji J T, Wang Y M, Kamiya Y, Wang X Q, Ma J, and Zhang Q M 2021 Phys. Rev. B 103 035144
[10] Ranjith K M, Luther S, Reimann T, Schmidt B, Schlender P, Sichelschmidt J, Yasuoka H, Strydom A M, Skourski Y, Wosnitza J, Kühne H, Doert T, and Baenitz M 2019 Phys. Rev. B 100 224417
[11] Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G, and Lee Y S 2007 Phys. Rev. Lett. 98 107204
[12] Itou T, Oyamada A, Maegawa S, Tamura M, and Kato R 2008 Phys. Rev. B 77 104413
[13] Li Y S, Liao H J, Zhang Z, Li S Y, Jin F, Ling L S, Zhang L, Zou Y M, Pi L, Yang Z R, Wang J F, Wu Z H, and Zhang Q M 2015 Sci. Rep. 5 16419
[14] Li Y S, Chen G, Tong W, Pi L, Liu J J, Yang Z R, Wang X Q, and Zhang Q M 2015 Phys. Rev. Lett. 115 167203
[15] Li Y S, Adroja D, Biswas P K, Baker P J, Zhang Q, Liu J J, Tsirlin A A, Gegenwart P, and Zhang Q M 2016 Phys. Rev. Lett. 117 097201
[16] Xu Y, Zhang J, Li Y S, Yu Y J, Hong X C, Zhang Q M, and Li S Y 2016 Phys. Rev. Lett. 117 267202
[17] Shen Y, Li Y D, Wo H L, Li Y S, Shen S D, Pan B Y, Wang Q S, Walker H C, Steffens P, Boehm M, Hao Y Q, Quintero-Castro D L, Harriger L W, Frontzek M D, Hao L J, Meng S Q, Zhang Q M, Chen G, and Zhao J 2016 Nature 540 559
[18] Paddison J A M, Daum M, Dun Z L, Ehlers G, Liu Y H, Stone Matthew?B, Zhou H D, and Mourigal M 2017 Nat. Phys. 13 117
[19] Xing J, Sanjeewa L D, Kim J, Meier W R, May A F, Zheng Q, Custelcean R, Stewart G R, and Sefat A S 2019 Phys. Rev. Mater. 3 114413
[20] Scheie A, Garlea V O, Sanjeewa L D, Xing J, and Sefat A S 2020 Phys. Rev. B 101 144432
[21] Zhang Z, Li J S, Liu W W, Zhang Z T, Ji J T, Jin F, Chen R, Wang J F, Wang X Q, Ma J, and Zhang Q M 2021 Phys. Rev. B 103 184419
[22] Liu W W, Yan D Y, Zhang Z, Ji J T, Shi Y G, Jin F, and Zhang Q M 2021 Chin. Phys. B 30 107504
[23] Zhang Z, Yin Y Y, Ma X L, Liu W W, Li J S, Jin F, Ji J T, Wang Y M, Wang X Q, Yu X H, and Zhang Q M 2020 arXiv:2003.11479 [cond-mat.supr-con]
[24] Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, and Jin C Q 2020 Chin. Phys. Lett. 37 097404
[25]Supplementary Information
[26] Li Y D, Wang X Q, and Chen G 2016 Phys. Rev. B 94 035107
[27] Schmidt B, Sichelschmidt J, Ranjith K M, Doert T, and Baenitz M 2021 Phys. Rev. B 103 214445
[28] Li Y S, Adroja D, Bewley R I, Voneshen D, Tsirlin A A, Gegenwart P, and Zhang Q M 2017 Phys. Rev. Lett. 118 107202
[29] Sichelschmidt J, Schlender P, Schmidt B, Baenitz M, and Doert T 2019 J. Phys.: Condens. Matter 31 205601
[30] Sichelschmidt J, Schmidt B, Schlender P, Khim S, Doert T, and Baenitz M 2020 JPS Conf. Proc. 30 011096
Related articles from Frontiers Journals
[1] Meng Wang, Hai-Hu Wen, Tao Wu, Dao-Xin Yao, and Tao Xiang. Normal and Superconducting Properties of La$_3$Ni$_2$O$_7$[J]. Chin. Phys. Lett., 2024, 41(7): 097503
[2] Haiyuan Zou and Wei Wang. Gapless Spin Liquid and Nonlocal Corner Excitation in the Spin-$1/2$ Heisenberg Antiferromagnet on Fractal[J]. Chin. Phys. Lett., 2023, 40(5): 097503
[3] Yanxing Yang, Kaiwen Chen, Zhaofeng Ding, Adrian D. Hillier, and Lei Shu. Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 097503
[4] Ling Wang, Yalei Zhang, and Anders W. Sandvik. Quantum Spin Liquid Phase in the Shastry–Sutherland Model Detected by an Improved Level Spectroscopic Method[J]. Chin. Phys. Lett., 2022, 39(7): 097503
[5] Xiaoxue Zhao, Kejing Ran, Jinghui Wang, Song Bao, Yanyan Shangguan, Zhentao Huang, Junbo Liao, Bo Zhang, Shufan Cheng, Hao Xu, Wei Wang, Zhao-Yang Dong, Siqin Meng, Zhilun Lu, Shin-ichiro Yano, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Neutron Spectroscopy Evidence for a Possible Magnetic-Field-Induced Gapless Quantum-Spin-Liquid Phase in a Kitaev Material $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(5): 097503
[6] Kejing Ran, Jinghui Wang, Song Bao, Zhengwei Cai, Yanyan Shangguan, Zhen Ma, Wei Wang, Zhao-Yang Dong, P. Čermák, A. Schneidewind, Siqin Meng, Zhilun Lu, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(2): 097503
[7] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 097503
[8] Jianting Ji, Mengjie Sun, Yanzhen Cai, Yimeng Wang, Yingqi Sun, Wei Ren, Zheng Zhang, Feng Jin, and Qingming Zhang. Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates[J]. Chin. Phys. Lett., 2021, 38(4): 097503
[9] J.-J. Wen, Y. S. Lee. The Search for the Quantum Spin Liquid in Kagome Antiferromagnets[J]. Chin. Phys. Lett., 2019, 36(5): 097503
[10] Zili Feng, Wei Yi, Kejia Zhu, Yuan Wei, Shanshan Miao, Jie Ma, Jianlin Luo, Shiliang Li, Zi Yang Meng, Youguo Shi. From Claringbullite to a New Spin Liquid Candidate Cu$_3$Zn(OH)$_6$FCl[J]. Chin. Phys. Lett., 2019, 36(1): 097503
[11] Weiwei Liu, Zheng Zhang, Jianting Ji, Yixuan Liu, Jianshu Li, Xiaoqun Wang, Hechang Lei, Gang Chen, Qingming Zhang. Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates[J]. Chin. Phys. Lett., 2018, 35(11): 097503
[12] Zili Feng, Zheng Li, Xin Meng, Wei Yi, Yuan Wei, Jun Zhang, Yan-Cheng Wang, Wei Jiang, Zheng Liu, Shiyan Li, Feng Liu, Jianlin Luo, Shiliang Li, Guo-qing Zheng, Zi Yang Meng, Jia-Wei Mei, Youguo Shi. Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu$_3$Zn(OH)$_6$FBr [J]. Chin. Phys. Lett., 2017, 34(7): 097503
Viewed
Full text


Abstract