CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Magnetic Nonreciprocity in a Hybrid Device of Asymmetric Artificial Spin-Ice-Superconductors |
Chong Li1,2,3, Peiyuan Huang1,2,3, Chen-Guang Wang1,2,3, Haojie Li1, Yang-Yang Lyu1*, Wen-Cheng Yue1*, Zixiong Yuan1,2,3, Tianyu Li1,2,3, Xuecou Tu1,2, Tao Tao3, Sining Dong1,3, Liang He3, Xiaoqing Jia1, Guozhu Sun1,2, Lin Kang1, Huabing Wang1,2, Peiheng Wu1,2, and Yong-Lei Wang1,2,3* |
1Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China 2Purple Mountain Laboratories, Nanjing 211111, China 3National Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China
|
|
Cite this article: |
Chong Li, Peiyuan Huang, Chen-Guang Wang et al 2024 Chin. Phys. Lett. 41 067402 |
|
|
Abstract Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities. We introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets. This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices, thereby inducing a magnetic nonreciprocal effect, in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes. Furthermore, the polarity of the magnetic nonreciprocity is in situ reversible through the tunable magnetic patterns of artificial spin ice. Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities, offering a groundbreaking paradigm for superconducting electronics.
|
|
Received: 20 March 2024
Express Letter
Published: 21 May 2024
|
|
PACS: |
74.25.Qt
|
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
85.25.-j
|
(Superconducting devices)
|
|
74.78.Na
|
(Mesoscopic and nanoscale systems)
|
|
|
|
|
[1] | Gammel P 2001 Nature 411 434 |
[2] | Savel'ev S and Nori F 2002 Nat. Mater. 1 179 |
[3] | Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J, and Crabtree G W 2016 Rep. Prog. Phys. 79 116501 |
[4] | Bugoslavsky Y, Cohen L F, Perkins G K, Polichetti M, Tate T J, Gwilliam R, and Caplin A D 2001 Nature 411 561 |
[5] | Díaz A, Mechin L, Berghuis P, and Evetts J E 1998 Phys. Rev. Lett. 80 3855 |
[6] | Blatter G, Rhyner J, and Vinokur V M 1991 Phys. Rev. B 43 7826 |
[7] | Tarantini C, Lee S, Zhang Y, Jiang J, Bark C W, Weiss J D, Polyanskii A, Nelson C T, Jang H W, Folkman C M, Baek S H, Pan X Q, Gurevich A, Hellstrom E E, Eom C B, and Larbalestier D C 2010 Appl. Phys. Lett. 96 142510 |
[8] | van Gennep D, Hassan A, Luo H Q, and Abdel-Hafiez M 2020 Phys. Rev. B 101 235163 |
[9] | Luan L, Lippman T M, Hicks C W, Bert J A, Auslaender O M, Chu J H, Analytis J G, Fisher I R, and Moler K A 2011 Phys. Rev. Lett. 106 067001 |
[10] | Latimer M L, Berdiyorov G R, Xiao Z L, Peeters F M, and Kwok W K 2013 Phys. Rev. Lett. 111 067001 |
[11] | Trastoy J, Malnou M, Ulysse C, Bernard R, Bergeal N, Faini G, Lesueur J, Briatico J, and Villegas J E 2014 Nat. Nanotechnol. 9 710 |
[12] | van Look L, Zhu B Y, Jonckheere R, Zhao B R, Zhao Z X, and Moshchalkov V V 2002 Phys. Rev. B 66 214511 |
[13] | Harada K, Kamimura O, Kasai H, Matsuda T, Tonomura A, and Moshchalkov V V 1996 Science 274 1167 |
[14] | Wang Y L, Latimer M L, Xiao Z L, Divan R, Ocola L E, Crabtree G W, and Kwok W K 2013 Phys. Rev. B 87 220501 |
[15] | Patel U, Xiao Z L, Hua J, Xu T, Rosenmann D, Novosad V, Pearson J, Welp U, Kwok W K, and Crabtree G W 2007 Phys. Rev. B 76 020508 |
[16] | Latimer M L, Berdiyorov G R, Xiao Z L, Kwok W K, and Peeters F M 2012 Phys. Rev. B 85 012505 |
[17] | Ge J Y, Gladilin V N, Tempere J, Devreese J T, and Moshchalkov V V 2018 Nat. Commun. 9 2576 |
[18] | Villegas J E, Savel'ev S, Nori F, Gonzalez E M, Anguita J V, García R, and Vicent J L 2003 Science 302 1188 |
[19] | Martín J I, Vélez M, Hoffmann A, Schuller I K, and Vicent J L 1999 Phys. Rev. Lett. 83 1022 |
[20] | Silhanek A V, Gillijns W, Moshchalkov V V, Zhu B Y, Moonens J, and Leunissen L H A 2006 Appl. Phys. Lett. 89 152507 |
[21] | Morgan D J and Ketterson J B 1998 Phys. Rev. Lett. 80 3614 |
[22] | Martín J I, Vélez M, Nogués J, and Schuller I K 1997 Phys. Rev. Lett. 79 1929 |
[23] | Kramer R B G, Silhanek A V, van de Vondel J, Raes B, and Moshchalkov V V 2009 Phys. Rev. Lett. 103 067007 |
[24] | Silhanek A V, Gillijns W, Moshchalkov V V, Metlushko V, and Ilic B 2006 Appl. Phys. Lett. 89 182505 |
[25] | Lange M, Bael M J V, Bruynseraede Y, and Moshchalkov V V 2003 Phys. Rev. Lett. 90 197006 |
[26] | Gomez A, Gilbert D A, Gonzalez E M, Liu K, and Vicent J L 2013 Appl. Phys. Lett. 102 052601 |
[27] | Perez de Lara D, Castaño F J, Ng B G, Körner H S, Dumas R K, Gonzalez E M, Liu K, Ross C A, Schuller I K, and Vicent J L 2011 Appl. Phys. Lett. 99 182509 |
[28] | de Souza Silva C C, Silhanek A V, van de Vondel J, Gillijns W, Metlushko V, Ilic B, and Moshchalkov V V 2007 Phys. Rev. Lett. 98 117005 |
[29] | Rollano V, Muñoz-Noval A, Gomez A, Valdes-Bango F, Martin J I, Velez M, Osorio M R, Granados D, Gonzalez E M, and Vicent J L 2019 Nanotechnology 30 244003 |
[30] | Wang Y L, Ma X, Xu J, Xiao Z L, Snezhko A, Divan R, Ocola L E, Pearson J E, Janko B, and Kwok W K 2018 Nat. Nanotechnol. 13 560 |
[31] | Lyu Y Y, Ma X Y, Xu J, Wang Y L, Xiao Z L, Dong S N, Janko B, Wang H B, Divan R, Pearson J E, Wu P H, and Kwok W K 2020 Nano Lett. 20 8933 |
[32] | Mengotti E, Heyderman L J, Rodríguez A F, Nolting F, Hügli R V, and Braun H B 2011 Nat. Phys. 7 68 |
[33] | Yue W C, Yuan Z, Lyu Y Y, Dong S, Zhou J, Xiao Z L, He L, Tu X, Dong Y, Wang H, Xu W, Kang L, Wu P, Nisoli C, Kwok W K, and Wang Y L 2022 Phys. Rev. Lett. 129 057202 |
[34] | Bramwell S T 2017 Nat. Mater. 16 1053 |
[35] | Wang Y L, Xiao Z L, Snezhko A, Xu J, Ocola L E, Divan R, Pearson J E, Crabtree G W, and Kwok W K 2016 Science 352 962 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|