GENERAL |
|
|
|
|
Maxwell Demon and Einstein–Podolsky–Rosen Steering |
Meng-Jun Hu1*, Xiao-Min Hu2,3, and Yong-Sheng Zhang2,3,4* |
1Beijing Academy of Quantum Information Sciences, Beijing 100193, China 2Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China 3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China 4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
|
|
Cite this article: |
Meng-Jun Hu, Xiao-Min Hu, and Yong-Sheng Zhang 2024 Chin. Phys. Lett. 41 050302 |
|
|
Abstract Research of Maxwell demon and quantum entanglement is important because of its foundational significance in physics and its potential applications in quantum information. Previous studies on the Maxwell demon have primarily focused on thermodynamics, taking into account quantum correlations. Here we consider from another perspective and ask whether quantum non-locality correlations can be simulated by performing work. The Maxwell demon-assisted Einstein–Podolsky–Rosen (EPR) steering is thus proposed, which implies a new type of loophole. The application of Landauer's erasure principle suggests that the only way to close this loophole during a steering task is by continuously monitoring the heat fluctuation of the local environment by the participant. We construct a quantum circuit model of Maxwell demon-assisted EPR steering, which can be demonstrated by current programmable quantum processors, such as superconducting quantum computers. Based on this quantum circuit model, we obtain a quantitative formula describing the relationship between energy dissipation due to the work of the demon and quantum non-locality correlation. The result is of great physical interest because it provides a new way to explore and understand the relationship between quantum non-locality, information, and thermodynamics.
|
|
Received: 26 January 2024
Published: 11 May 2024
|
|
PACS: |
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
|
|
|
[1] | Maddox J 2002 Nature 417 903 |
[2] | Landauer R 1961 IBM J. Res. Dev. 5 183 |
[3] | Vinjanampathy S and Anders J 2016 Contemp. Phys. 57 545 |
[4] | Plenio M B and Vitelli V 2001 Contemp. Phys. 42 25 |
[5] | Maruyama K, Nori F, and Vedral V 2009 Rev. Mod. Phys. 81 1 |
[6] | Horodecki R, Horodecki P, Horodecki M, and Horodecki K 2009 Rev. Mod. Phys. 81 865 |
[7] | Brunner N, Cavalcanti D, Pironio S, Scarani V, and Wehner S 2014 Rev. Mod. Phys. 86 419 |
[8] | Uola R, Costa A C S, Nguyen H C, and Gühne O 2020 Rev. Mod. Phys. 92 015001 |
[9] | del Rio L, Åberg J, Renner R, Dahlsten O, and Vedral V 2011 Nature 474 61 |
[10] | Oppenheim J, Horodecki M, Horodecki P, and Horodecki R 2002 Phys. Rev. Lett. 89 180402 |
[11] | Zurek W H 2003 Phys. Rev. A 67 012320 |
[12] | Maruyama K, Morikoshi F, and Vedral V 2005 Phys. Rev. A 71 012108 |
[13] | Groisman B, Popescu S, and Winter A 2005 Phys. Rev. A 72 032317 |
[14] | Funo K, Watanabe Y, and Ueda M 2013 Phys. Rev. A 88 052319 |
[15] | Perarnau-Llobet M, Hovhannisyan K V, Huber M, Skrzypczyk P, Brunner N, and Acín A 2015 Phys. Rev. X 5 041011 |
[16] | Ciampini M A, Mancino L, Orieux A, Vigliar C, Mataloni P, Paternostro M, and Barbieri M 2017 npj Quantum Inf. 3 10 |
[17] | Lloyd S 1997 Phys. Rev. A 56 3374 |
[18] | Kieu T D 2004 Phys. Rev. Lett. 93 140403 |
[19] | Beyer K, Luoma K, and Strunz W T 2019 Phys. Rev. Lett. 123 250606 |
[20] | Elouard C, Herrera-Martí D, Huard B, and Auffèves A 2017 Phys. Rev. Lett. 118 260603 |
[21] | Ji W T, Chai Z H, Wang M Q, Guo Y H, Rong X, Shi F Z, Ren C L, Wang Y, and Du J F 2022 Phys. Rev. Lett. 128 090602 |
[22] | Wiseman H M, Jones S J, and Doherty A C 2007 Phys. Rev. Lett. 98 140402 |
[23] | Saunders D J, Jones S J, Wiseman H M, and Pryde G J 2010 Nat. Phys. 6 845 |
[24] | Moldover M R, Tew W L, and Yoon H W 2016 Nat. Phys. 12 7 |
[25] | Ren J G, Xu P, Yong H L et al. 2017 Nature 549 70 |
[26] | Arute F, Arya K, Babbush R et al. 2019 Nature 574 505 |
[27] | Wu Y L, Bao W S, Cao S R et al. 2021 Phys. Rev. Lett. 127 180501 |
[28] | Zhu Q L, Cao S R, Chen F S et al. 2022 Sci. Bull. 67 240 |
[29] | Song C, Xu K, Li H K et al. 2019 Science 365 574 |
[30] | Preskill J 2018 Quantum 2 79 |
[31] | Nielson M A and Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge: Cambridge University Press) |
[32] | Wang Z T, Wang R X, Zhao P, Yang Z H, Huang K X, Xu K, Zhang Y S, Fan H, Zhao S P, Hu M J, and Yu H F 2023 arXiv:2311.10955 [quant-ph] |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|