Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 053101    DOI: 10.1088/0256-307X/41/5/053101
ATOMIC AND MOLECULAR PHYSICS |
Direct Observation on H-Elimination Enhancement from C$_{2}$H$_{4}$ through Non-Adiabatic Process by Femtosecond Laser Induced Coulomb Explosion
Wuwei Jin1,2, Chuncheng Wang1,2*, Xiaoge Zhao1,2, Yizhang Yang1,2, Dianxiang Ren1,2, Zejin Liu1,2, Xiaokai Li1,2, Sizuo Luo1,2, and Dajun Ding1,2*
1Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
2Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
Cite this article:   
Wuwei Jin, Chuncheng Wang, Xiaoge Zhao et al  2024 Chin. Phys. Lett. 41 053101
Download: PDF(1729KB)   PDF(mobile)(1737KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ethylene, the simplest model of a carbon-carbon double bond system, is pivotal in numerous chemical and biological processes. By employing intense infrared laser pump-probe techniques alongside coincidence measurements, we investigate the ultrafast non-adiabatic dynamics involved in the breakage of carbon-carbon double bonds and hydrogen elimination in dissociation of ethylene. Our study entails analyzing the dynamic kinetic energy release spectra to assess three bond-breaking scenarios, movements of nuclei, and structural changes around the carbon atoms. This allows us to evaluate the relaxation dynamics and characteristics of various dissociative states. Notably, we observe a significant rise in the yield of fragments resulting from C–H bond breakage with the delay time extended, suggesting non-adiabatic coupling through conical intersections from C–C bond breakage as a probable cause.
Received: 28 February 2024      Published: 28 May 2024
PACS:  32.80.-t (Photoionization and excitation)  
  32.80.Fb (Photoionization of atoms and ions)  
  33.80.Eh (Autoionization, photoionization, and photodetachment)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/053101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/053101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wuwei Jin
Chuncheng Wang
Xiaoge Zhao
Yizhang Yang
Dianxiang Ren
Zejin Liu
Xiaokai Li
Sizuo Luo
and Dajun Ding
[1] Sainadh U S, Xu H, Wang X, Atia-Tul-Noor A, Wallace W C, Douguet N, Bray A, Ivanov I, Bartschat K, Kheifets A, Sang R T, and Litvinyuk I V 2019 Nature 568 75
[2] Luo S, Liu J, Li X, Zhang D, Yu X, Ren D, Li M, Yang Y, Wang Z, Ma P, Wang C, Zhao J, Zhao Z, and Ding D 2021 Phys. Rev. Lett. 126 103202
[3] Hanus V, Kangaparambil S, Larimian S, Dorner-Kirchner M, Xie X, Schöffler M S, Paulus G G, Baltuška A, Staudte A, and Kitzler-Zeiler M 2019 Phys. Rev. Lett. 123 263201
[4] Ji Q, Pan S, He P, Wang J, Lu P, Li H, Gong X, Lin K, Zhang W, Ma J, Li H, Duan C, Liu P, Bai Y, Li R, He F, and Wu J 2019 Phys. Rev. Lett. 123 233202
[5] Li X, Yu X, Ma P, Zhao X, Wang C, Luo S, and Ding D 2022 Chin. Phys. B 31 103304
[6] Yu X, Hu X, Zhou J, Zhang X, Zhao X, Jia S, Xue X, Ren D, Li X, Wu Y, Ren X, Luo S, and Ding D 2022 Chin. Phys. Lett. 39 113301
[7] Ergler T, Rudenko A, Feuerstein B, Zrost K, Schröter C D, Moshammer R, and Ullrich J 2006 Phys. Rev. Lett. 97 193001
[8] Bocharova I A, Alnaser A S, Thumm U, Niederhausen T, Ray D, Cocke C L, and Litvinyuk I V 2011 Phys. Rev. A 83 013417
[9] Okino T, Furukawa Y, Nabekawa Y, Miyabe S, Amani Eilanlou A, Takahashi E J, Yamanouchi K, and Midorikawa K 2015 Sci. Adv. 1 e1500356
[10] Ibrahim H, Wales B, Beaulieu S et al. 2014 Nat. Commun. 5 4422
[11] McDonnell M, LaForge A C, Reino-González J et al. 2020 J. Phys. Chem. Lett. 11 6724
[12] Wei Z, Li J, Wang L, See S T, Jhon M H, Zhang Y, Shi F, Yang M, and Loh Z H 2017 Nat. Commun. 8 735
[13] Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, and Wörner H J 2021 Science 371 489
[14] Corrales M E, González-Vázquez J, de Nalda R, and Bañares L 2019 J. Phys. Chem. Lett. 10 138
[15] Endo T, Neville S P, Wanie V, Beaulieu S, Qu C, Deschamps J, Lassonde P, Schmidt B E, Fujise H, Fushitani M, Hishikawa A, Houston P L, Bowman J M, Schuurman M S, Légaré F, and Ibrahim H 2020 Science 370 1072
[16] Ekanayake N, Severt T, Nairat M, Weingartz N P, Farris B M, Kaderiya B, Feizollah P, Jochim B, Ziaee F, Borne K, Raju P K, Carnes K D, Rolles D, Rudenko A, Levine B G, Jackson J E, Ben-Itzhak I, and Dantus M 2018 Nat. Commun. 9 5186
[17] Luo S, Zhou S, Hu W, Li X, Ma P, Yu J, Zhu R, Wang C, Liu F, Yan B, Liu A, Yang Y, Guo F, and Ding D 2017 Phys. Rev. A 96 063415
[18] Zhao X, Yu X, Xu X, Yin Z, Yu J, Li X, Ma P, Zhang D, Wang C, Luo S, and Ding D 2020 Phys. Rev. A 101 013416
[19] Zhao X, Xu T, Yu X, Ren D, Zhang X, Li X, Ma P, Wang C, Zhang D, Wang Q, Hu X, Luo S, Wu Y, Wang J, and Ding D 2021 Phys. Rev. A 103 053103
[20] Kling N G, Díaz-Tendero S, Obaid R, Disla M R, Xiong H, Sundberg M, Khosravi S D, Davino M, Drach P, Carroll A M, Osipov T, Martín F, and Berrah N 2019 Nat. Commun. 10 2813
[21] Ludwig A, Liberatore E, Herrmann J, Kasmi L, López-Tarifa P, Gallmann L, Rothlisberger U, Keller U, and Lucchini M 2016 J. Phys. Chem. Lett. 7 1901
[22] Champenois E G, Shivaram N H, Wright T W, Yang C S, Belkacem A, and Cryan J P 2016 J. Chem. Phys. 144 014303
[23] Zeller S, Kunitski M, Voigtsberger J et al. 2018 Phys. Rev. Lett. 121 083002
[24] Köppel H, Domcke W, Cederbaum L S, and von Niessen W 1978 J. Chem. Phys. 69 4252
[25] Lorquet J C, Sannen C, and Raseev G 1980 J. Am. Chem. Soc. 102 7976
[26] Sannen C, Raşeev G, Galloy C, Fauville G, and Lorquet J C 1981 J. Chem. Phys. 74 2402
[27] Farmanara P, Stert V, and Radloff W 1998 Chem. Phys. Lett. 288 518
[28] Tao H, Allison T K, Wright T W, Stooke A M, Khurmi C, van Tilborg J, Liu Y, Falcone R W, Belkacem A, and Martinez T J 2011 J. Chem. Phys. 134 244306
[29] Stert V, Lippert H, Ritze H H, and Radloff W 2004 Chem. Phys. Lett. 388 144
[30] van Tilborg J, Allison T K, Wright T W, Hertlein M P, Falcone R W, Liu Y, Merdji H, and Belkacem A 2009 J. Phys. B 42 081002
[31] Kosma K, Trushin S A, Fuss W, and Schmid W E 2008 J. Phys. Chem. A 112 7514
[32] Martínez T J 2006 Acc. Chem. Res. 39 119
[33] Joalland B, Mori T, Martínez T J, and Suits A G 2014 J. Phys. Chem. Lett. 5 1467
[34] Kayi H, Garcia-Fernandez P, Bersuker I B, and Boggs J E 2013 J. Phys. Chem. A 117 8671
[35] Xie X, Roither S, Schöffler M, Lötstedt E, Kartashov D, Zhang L, Paulus G G, Iwasaki A, Baltuška A, Yamanouchi K, and Kitzler M 2014 Phys. Rev. X 4 021005
[36] Gaire B, Lee S Y, Haxton D J, Pelz P M, Bocharova I, Sturm F P, Gehrken N, Honig M, Pitzer M, Metz D, Kim H K, Schöffler M, Dörner R, Gassert H, Zeller S, Voigtsberger J, Cao W, Zohrabi M, Williams J, Gatton A, Reedy D, Nook C, Müller T, Landers A L, Cocke C L, Ben-Itzhak I, Jahnke T, Belkacem A, and Weber T 2014 Phys. Rev. A 89 013403
[37] Gaire B, Haxton D J, Sturm F P, Williams J, Gatton A, Bocharova I, Gehrken N, Schöffler M, Gassert H, Zeller S, Voigtsberger J, Jahnke T, Zohrabi M, Reedy D, Nook C, Landers A L, Belkacem A, Cocke C L, Ben-Itzhak I, Dörner R, and Weber T 2015 Phys. Rev. A 92 013408
[38] Stolow A, Balko B A, Cromwell E F, Zhang J, and Lee Y T 1992 J. Photochem. Photobiol. A 62 285
[39] Piancastelli M N, Stolte W C, Öhrwall G, Yu S W, Bull D, Lantz K, Schlachter A S, and Lindle D W 2002 J. Chem. Phys. 117 8264
[40] Yang Y, Ren H, Zhang M, Zhou S, Mu X, Li X, Wang Z, Deng K, Li M, Ma P, Li Z, Hao X, Li W, Chen J, Wang C, and Ding D 2023 Nat. Commun. 14 4951
[41] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, and Schmidt-Böcking H 2000 Phys. Rep. 330 95
[42] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, and Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463
[43] Liang Q, Wu C, Wu Z, Liu M, Deng Y, and Gong Q 2009 Chem. Phys. 360 13
[44] Wang C, Li X, Xiao X R, Yang Y, Luo S, Yu X, Xu X, Peng L Y, Gong Q, and Ding D 2019 Phys. Rev. Lett. 122 013203
[45] Li X, Yu J, Xu H, Yu X, Yang Y, Wang Z, Ma P, Wang C, Guo F, Yang Y, Luo S, and Ding D 2019 Phys. Rev. A 100 013415
[46] Lee S H, Lee Y T, and Yang X 2004 J. Chem. Phys. 120 10983
[47] Ohrendorf E, Köppel H, Cederbaum L S, Tarantelli F, and Sgamellotti A 1989 J. Chem. Phys. 91 1734
[48] Fiebig T, Chachisvilis M, Manger M, Zewail A H, Douhal A, Garcia-Ochoa I, and de La Hoz Ayuso A 1999 J. Phys. Chem. A 103 7419
Related articles from Frontiers Journals
[1] Hong-Ling Yue, Hu Shao, Zheng Chen, Peng-Cheng Fang, Meng-Yan Zeng, Bao-Lin Zhang, Yao Huang, Ji-Guang Li, Qun-Feng Chen, Hua Guan, and Ke-Lin Gao. Isotope-Shift Measurement of Bosonic Yb$^{+}$ Ions[J]. Chin. Phys. Lett., 2023, 40(9): 053101
[2] Yankun Dou, Yiqi Fang, Peipei Ge, and Yunquan Liu. Controlling Magnetic and Electric Nondipole Effects with Synthesized Two Perpendicularly Propagating Laser Fields[J]. Chin. Phys. Lett., 2023, 40(3): 053101
[3] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 053101
[4] Shuai Wang, Zhiyuan Zhu, Yizhu Zhang, Tian-Min Yan, and Yuhai Jiang. Rabi Oscillations and Coherence Dynamics in Terahertz Streaking-Assisted Photoelectron Spectrum[J]. Chin. Phys. Lett., 2021, 38(1): 053101
[5] Fei Li, Yu-Jun Yang, Jing Chen, Xiao-Jun Liu, Zhi-Yi Wei, and Bing-Bing Wang. Universality of the Dynamic Characteristic Relationship of Electron Correlation in the Two-Photon Double Ionization Process of a Helium-Like System[J]. Chin. Phys. Lett., 2020, 37(11): 053101
[6] Jiu Tang, Guizhong Zhang, Yufei He, Meng Li, Xin Ding, Jianquan Yao. Spider Structure of Photoelectron Momentum Distributions of Ionized Electrons from Hydrogen Atoms for Extraction of Carrier Envelope Phase of Few-Cycle Pulses[J]. Chin. Phys. Lett., 2020, 37(2): 053101
[7] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 053101
[8] Meng Li, Gui-zhong Zhang, Xin Ding, Jian-quan Yao. Carrier Envelope Phase Description for an Isolated Attosecond Pulse by Momentum Vortices[J]. Chin. Phys. Lett., 2019, 36(6): 053101
[9] Long Xu, Li-Bin Fu. Understanding Tunneling Ionization of Atoms in Laser Fields using the Principle of Multiphoton Absorption[J]. Chin. Phys. Lett., 2019, 36(4): 053101
[10] Juan-Juan Cao, Ting Gong, Zhong-Hao Li, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Transition Dipole Moment Measurements of Ultracold Photoassociated $^{85}$Rb$^{133}$Cs Molecules by Depletion Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(10): 053101
[11] Zhong-Hua Ji, Zhong-Hao Li, Ting Gong, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Rotational Population Measurement of Ultracold $^{85}$Rb$^{133}$Cs Molecules in the Lowest Vibrational Ground State[J]. Chin. Phys. Lett., 2017, 34(10): 053101
[12] Yu-Zhu Liu, Jin-You Long, Lin-Hua Xu, Xiang-Yun Zhang, Bing Zhang. Probing Ultrafast Dissociation Dynamics of Chloroiodomethane in the B Band by Time-Resolved Mass Spectrometry[J]. Chin. Phys. Lett., 2017, 34(3): 053101
[13] Fu Sun, Dong Wei, Gui-Zhong Zhang, Xin Ding, Jian-Quan Yao. Dynamic Interference Photoelectron Spectra in Double Ionization: Numerical Simulation of 1D Helium[J]. Chin. Phys. Lett., 2016, 33(12): 053101
[14] XU Zhi-Chao, PAN Duo, ZHUANG Wei, CHEN Jing-Biao. Dual-Wavelength Bad Cavity Laser as Potential Active Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(09): 053101
[15] XU Zhi-Chao, PAN Duo, ZHUANG Wei, CHEN Jing-Biao. Experimental Scheme of 633 nm and 1359 nm Good-Bad Cavity Dual-Wavelength Active Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(08): 053101
Viewed
Full text


Abstract