ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Direct Observation on H-Elimination Enhancement from C$_{2}$H$_{4}$ through Non-Adiabatic Process by Femtosecond Laser Induced Coulomb Explosion |
Wuwei Jin1,2, Chuncheng Wang1,2*, Xiaoge Zhao1,2, Yizhang Yang1,2, Dianxiang Ren1,2, Zejin Liu1,2, Xiaokai Li1,2, Sizuo Luo1,2, and Dajun Ding1,2* |
1Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China 2Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
|
|
Cite this article: |
Wuwei Jin, Chuncheng Wang, Xiaoge Zhao et al 2024 Chin. Phys. Lett. 41 053101 |
|
|
Abstract Ethylene, the simplest model of a carbon-carbon double bond system, is pivotal in numerous chemical and biological processes. By employing intense infrared laser pump-probe techniques alongside coincidence measurements, we investigate the ultrafast non-adiabatic dynamics involved in the breakage of carbon-carbon double bonds and hydrogen elimination in dissociation of ethylene. Our study entails analyzing the dynamic kinetic energy release spectra to assess three bond-breaking scenarios, movements of nuclei, and structural changes around the carbon atoms. This allows us to evaluate the relaxation dynamics and characteristics of various dissociative states. Notably, we observe a significant rise in the yield of fragments resulting from C–H bond breakage with the delay time extended, suggesting non-adiabatic coupling through conical intersections from C–C bond breakage as a probable cause.
|
|
Received: 28 February 2024
Published: 28 May 2024
|
|
PACS: |
32.80.-t
|
(Photoionization and excitation)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
33.80.Eh
|
(Autoionization, photoionization, and photodetachment)
|
|
|
|
|
[1] | Sainadh U S, Xu H, Wang X, Atia-Tul-Noor A, Wallace W C, Douguet N, Bray A, Ivanov I, Bartschat K, Kheifets A, Sang R T, and Litvinyuk I V 2019 Nature 568 75 |
[2] | Luo S, Liu J, Li X, Zhang D, Yu X, Ren D, Li M, Yang Y, Wang Z, Ma P, Wang C, Zhao J, Zhao Z, and Ding D 2021 Phys. Rev. Lett. 126 103202 |
[3] | Hanus V, Kangaparambil S, Larimian S, Dorner-Kirchner M, Xie X, Schöffler M S, Paulus G G, Baltuška A, Staudte A, and Kitzler-Zeiler M 2019 Phys. Rev. Lett. 123 263201 |
[4] | Ji Q, Pan S, He P, Wang J, Lu P, Li H, Gong X, Lin K, Zhang W, Ma J, Li H, Duan C, Liu P, Bai Y, Li R, He F, and Wu J 2019 Phys. Rev. Lett. 123 233202 |
[5] | Li X, Yu X, Ma P, Zhao X, Wang C, Luo S, and Ding D 2022 Chin. Phys. B 31 103304 |
[6] | Yu X, Hu X, Zhou J, Zhang X, Zhao X, Jia S, Xue X, Ren D, Li X, Wu Y, Ren X, Luo S, and Ding D 2022 Chin. Phys. Lett. 39 113301 |
[7] | Ergler T, Rudenko A, Feuerstein B, Zrost K, Schröter C D, Moshammer R, and Ullrich J 2006 Phys. Rev. Lett. 97 193001 |
[8] | Bocharova I A, Alnaser A S, Thumm U, Niederhausen T, Ray D, Cocke C L, and Litvinyuk I V 2011 Phys. Rev. A 83 013417 |
[9] | Okino T, Furukawa Y, Nabekawa Y, Miyabe S, Amani Eilanlou A, Takahashi E J, Yamanouchi K, and Midorikawa K 2015 Sci. Adv. 1 e1500356 |
[10] | Ibrahim H, Wales B, Beaulieu S et al. 2014 Nat. Commun. 5 4422 |
[11] | McDonnell M, LaForge A C, Reino-González J et al. 2020 J. Phys. Chem. Lett. 11 6724 |
[12] | Wei Z, Li J, Wang L, See S T, Jhon M H, Zhang Y, Shi F, Yang M, and Loh Z H 2017 Nat. Commun. 8 735 |
[13] | Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, and Wörner H J 2021 Science 371 489 |
[14] | Corrales M E, González-Vázquez J, de Nalda R, and Bañares L 2019 J. Phys. Chem. Lett. 10 138 |
[15] | Endo T, Neville S P, Wanie V, Beaulieu S, Qu C, Deschamps J, Lassonde P, Schmidt B E, Fujise H, Fushitani M, Hishikawa A, Houston P L, Bowman J M, Schuurman M S, Légaré F, and Ibrahim H 2020 Science 370 1072 |
[16] | Ekanayake N, Severt T, Nairat M, Weingartz N P, Farris B M, Kaderiya B, Feizollah P, Jochim B, Ziaee F, Borne K, Raju P K, Carnes K D, Rolles D, Rudenko A, Levine B G, Jackson J E, Ben-Itzhak I, and Dantus M 2018 Nat. Commun. 9 5186 |
[17] | Luo S, Zhou S, Hu W, Li X, Ma P, Yu J, Zhu R, Wang C, Liu F, Yan B, Liu A, Yang Y, Guo F, and Ding D 2017 Phys. Rev. A 96 063415 |
[18] | Zhao X, Yu X, Xu X, Yin Z, Yu J, Li X, Ma P, Zhang D, Wang C, Luo S, and Ding D 2020 Phys. Rev. A 101 013416 |
[19] | Zhao X, Xu T, Yu X, Ren D, Zhang X, Li X, Ma P, Wang C, Zhang D, Wang Q, Hu X, Luo S, Wu Y, Wang J, and Ding D 2021 Phys. Rev. A 103 053103 |
[20] | Kling N G, Díaz-Tendero S, Obaid R, Disla M R, Xiong H, Sundberg M, Khosravi S D, Davino M, Drach P, Carroll A M, Osipov T, Martín F, and Berrah N 2019 Nat. Commun. 10 2813 |
[21] | Ludwig A, Liberatore E, Herrmann J, Kasmi L, López-Tarifa P, Gallmann L, Rothlisberger U, Keller U, and Lucchini M 2016 J. Phys. Chem. Lett. 7 1901 |
[22] | Champenois E G, Shivaram N H, Wright T W, Yang C S, Belkacem A, and Cryan J P 2016 J. Chem. Phys. 144 014303 |
[23] | Zeller S, Kunitski M, Voigtsberger J et al. 2018 Phys. Rev. Lett. 121 083002 |
[24] | Köppel H, Domcke W, Cederbaum L S, and von Niessen W 1978 J. Chem. Phys. 69 4252 |
[25] | Lorquet J C, Sannen C, and Raseev G 1980 J. Am. Chem. Soc. 102 7976 |
[26] | Sannen C, Raşeev G, Galloy C, Fauville G, and Lorquet J C 1981 J. Chem. Phys. 74 2402 |
[27] | Farmanara P, Stert V, and Radloff W 1998 Chem. Phys. Lett. 288 518 |
[28] | Tao H, Allison T K, Wright T W, Stooke A M, Khurmi C, van Tilborg J, Liu Y, Falcone R W, Belkacem A, and Martinez T J 2011 J. Chem. Phys. 134 244306 |
[29] | Stert V, Lippert H, Ritze H H, and Radloff W 2004 Chem. Phys. Lett. 388 144 |
[30] | van Tilborg J, Allison T K, Wright T W, Hertlein M P, Falcone R W, Liu Y, Merdji H, and Belkacem A 2009 J. Phys. B 42 081002 |
[31] | Kosma K, Trushin S A, Fuss W, and Schmid W E 2008 J. Phys. Chem. A 112 7514 |
[32] | Martínez T J 2006 Acc. Chem. Res. 39 119 |
[33] | Joalland B, Mori T, Martínez T J, and Suits A G 2014 J. Phys. Chem. Lett. 5 1467 |
[34] | Kayi H, Garcia-Fernandez P, Bersuker I B, and Boggs J E 2013 J. Phys. Chem. A 117 8671 |
[35] | Xie X, Roither S, Schöffler M, Lötstedt E, Kartashov D, Zhang L, Paulus G G, Iwasaki A, Baltuška A, Yamanouchi K, and Kitzler M 2014 Phys. Rev. X 4 021005 |
[36] | Gaire B, Lee S Y, Haxton D J, Pelz P M, Bocharova I, Sturm F P, Gehrken N, Honig M, Pitzer M, Metz D, Kim H K, Schöffler M, Dörner R, Gassert H, Zeller S, Voigtsberger J, Cao W, Zohrabi M, Williams J, Gatton A, Reedy D, Nook C, Müller T, Landers A L, Cocke C L, Ben-Itzhak I, Jahnke T, Belkacem A, and Weber T 2014 Phys. Rev. A 89 013403 |
[37] | Gaire B, Haxton D J, Sturm F P, Williams J, Gatton A, Bocharova I, Gehrken N, Schöffler M, Gassert H, Zeller S, Voigtsberger J, Jahnke T, Zohrabi M, Reedy D, Nook C, Landers A L, Belkacem A, Cocke C L, Ben-Itzhak I, Dörner R, and Weber T 2015 Phys. Rev. A 92 013408 |
[38] | Stolow A, Balko B A, Cromwell E F, Zhang J, and Lee Y T 1992 J. Photochem. Photobiol. A 62 285 |
[39] | Piancastelli M N, Stolte W C, Öhrwall G, Yu S W, Bull D, Lantz K, Schlachter A S, and Lindle D W 2002 J. Chem. Phys. 117 8264 |
[40] | Yang Y, Ren H, Zhang M, Zhou S, Mu X, Li X, Wang Z, Deng K, Li M, Ma P, Li Z, Hao X, Li W, Chen J, Wang C, and Ding D 2023 Nat. Commun. 14 4951 |
[41] | Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, and Schmidt-Böcking H 2000 Phys. Rep. 330 95 |
[42] | Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, and Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463 |
[43] | Liang Q, Wu C, Wu Z, Liu M, Deng Y, and Gong Q 2009 Chem. Phys. 360 13 |
[44] | Wang C, Li X, Xiao X R, Yang Y, Luo S, Yu X, Xu X, Peng L Y, Gong Q, and Ding D 2019 Phys. Rev. Lett. 122 013203 |
[45] | Li X, Yu J, Xu H, Yu X, Yang Y, Wang Z, Ma P, Wang C, Guo F, Yang Y, Luo S, and Ding D 2019 Phys. Rev. A 100 013415 |
[46] | Lee S H, Lee Y T, and Yang X 2004 J. Chem. Phys. 120 10983 |
[47] | Ohrendorf E, Köppel H, Cederbaum L S, Tarantelli F, and Sgamellotti A 1989 J. Chem. Phys. 91 1734 |
[48] | Fiebig T, Chachisvilis M, Manger M, Zewail A H, Douhal A, Garcia-Ochoa I, and de La Hoz Ayuso A 1999 J. Phys. Chem. A 103 7419 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|