GENERAL |
|
|
|
|
Experimental Investigation of Lee–Yang Criticality Using Non-Hermitian Quantum System |
Ziheng Lan1,2†, Wenquan Liu1,2,4†, Yang Wu1,2*, Xiangyu Ye1,2, Zhesen Yang5, Chang-Kui Duan1,2,3, Ya Wang1,2,3, and Xing Rong1,2,3 |
1CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China 2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China 3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China 4School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China 5Kavli Institute for Theoretical Sciences, Chinese Academy of Sciences, Beijing 100190, China
|
|
Cite this article: |
Ziheng Lan, Wenquan Liu, Yang Wu et al 2024 Chin. Phys. Lett. 41 050301 |
|
|
Abstract Lee–Yang theory clearly demonstrates where the phase transition of many-body systems occurs and the asymptotic behavior near the phase transition using the partition function under complex parameters. The complex parameters make the direct investigation of Lee–Yang theory in practical systems challenging. Here we construct a non-Hermitian quantum system that can correspond to the one-dimensional Ising model with imaginary parameters through the equality of partition functions. By adjusting the non-Hermitian parameter, we successfully obtain the partition function under different imaginary magnetic fields and observe the Lee–Yang zeros. We also observe the critical behavior of free energy in vicinity of Lee–Yang zero that is consistent with theoretical prediction. Our work provides a protocol to study Lee–Yang zeros of the one-dimensional Ising model using a single-qubit non-Hermitian system.
|
|
Received: 23 November 2023
Published: 07 May 2024
|
|
PACS: |
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
05.70.Jk
|
(Critical point phenomena)
|
|
64.60.-i
|
(General studies of phase transitions)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
|
|
|
[1] | Chandler D 1987 Introduction to Modern Statistical Mechanics (Oxford: Oxford University Press) |
[2] | Goldenfeld N 1992 Lectures on Phase Transitions and the Renormalization Group (Boulder: Westview Press) |
[3] | Yang C N and Lee T D 1952 Phys. Rev. 87 404 |
[4] | Lee T D and Yang C N 1952 Phys. Rev. 87 410 |
[5] | Lee J 2013 Phys. Rev. Lett. 110 248101 |
[6] | Lee J 2013 Phys. Rev. E 88 022710 |
[7] | Krasnytska M, Berche B, Holovatch Y, and Kenna R 2015 Europhys. Lett. 111 60009 |
[8] | Krasnytska M, Berche B, Holovatch Y, and Kenna R 2016 J. Phys. A 49 135001 |
[9] | Borrmann P, Mülken O, and Harting J 2000 Phys. Rev. Lett. 84 3511 |
[10] | van Dijk W, Lobo C, MacDonald A, and Bhaduri R K 2015 Can. J. Phys. 93 830 |
[11] | Binek C 1998 Phys. Rev. Lett. 81 5644 |
[12] | Binek C, Kleemann W, and Katori H A 2001 J. Phys.: Condens. Matter 13 L811 |
[13] | Wei B B and Liu R B 2012 Phys. Rev. Lett. 109 185701 |
[14] | Peng X, Zhou H, Wei B B, Cui J, Du J, and Liu R B 2015 Phys. Rev. Lett. 114 010601 |
[15] | Francis A, Zhu D W, Huerta Alderete C, Johri S, Xiao X, Freericks J K, Monroe C, Linke N M, and Kemper A F 2021 Sci. Adv. 7 eabf2447 |
[16] | Suzuki M 1976 Prog. Theor. Phys. 56 1454 |
[17] | Kogut J B 1979 Rev. Mod. Phys. 51 659 |
[18] | Matsumoto N, Nakagawa M, and Ueda M 2022 Phys. Rev. Res. 4 033250 |
[19] | Wu Y, Liu W, Geng J, Song X, Ye X, Duan C K, Rong X, and Du J 2019 Science 364 878 |
[20] | Liu W, Wu Y, Duan C K, Rong X, and Du J 2021 Phys. Rev. Lett. 126 170506 |
[21] | Jacques V, Neumann P, Beck J, Markham M, Twitchen D, Meijer J, Kaiser F, Balasubramanian G, Jelezko F, and Wrachtrup J 2009 Phys. Rev. Lett. 102 057403 |
[22] | Fang S, Zhou Z, and Deng Y 2022 Chin. Phys. Lett. 39 080502 |
[23] | Yin S, Huang G Y, Lo C Y, and Chen P 2017 Phys. Rev. Lett. 118 065701 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|