Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 037401    DOI: 10.1088/0256-307X/41/3/037401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Visualizing the Local Twist Angle Variation within and between Domains of Twisted Bilayer Graphene
Jiawei Hu1,2†, Shiyu Zhu1,2†*, Qianying Hu1,2†, Yunhao Wang1,2, Chengmin Shen1,2, Haitao Yang1,2, Xiaoshan Zhu1,2, Qing Huan1,2, Yang Xu1,2*, and Hong-Jun Gao1,2,3*
1Beijing National Center for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Hefei National Laboratory, Hefei 230088, China
Cite this article:   
Jiawei Hu, Shiyu Zhu, Qianying Hu et al  2024 Chin. Phys. Lett. 41 037401
Download: PDF(14572KB)   PDF(mobile)(14582KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Moiré superlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena, which are highly sensitive to twist angles, including both the global value and the spatial inhomogeneity. However, only a few methods provide spatial-resolved information for characterizing local twist angle distribution. Here we directly visualize the variations of local twist angles and angle-dependent evolutions of the quantum states in twisted bilayer graphene by scanning microwave impedance microscopy (sMIM). Spatially resolved sMIM measurements reveal a pronounced alteration in the local twist angle, approximately 0.3$^{\circ}$ over several micrometers in some cases. The variation occurs not only when crossing domain boundaries but also occasionally within individual domains. Additionally, the full-filling density of the flat band experiences a change of over $2 \times 10^{11}$ cm$^{-2}$ when crossing domain boundaries, aligning consistently with the twist angle inhomogeneity. Moreover, the correlated Chern insulators undergo variations in accordance with the twist angle, gradually weakening and eventually disappearing as the deviation from the magic angle increases. Our findings signify the crucial role of twist angles in shaping the distribution and existence of quantum states, establishing a foundational cornerstone for advancing the study of twisted two-dimensional materials.
Received: 26 February 2024      Express Letter Published: 06 March 2024
PACS:  74.78.Fk (Multilayers, superlattices, heterostructures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/037401       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/037401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiawei Hu
Shiyu Zhu
Qianying Hu
Yunhao Wang
Chengmin Shen
Haitao Yang
Xiaoshan Zhu
Qing Huan
Yang Xu
and Hong-Jun Gao
[1] Kennes D M, Claassen M, Xian L, Georges A, Millis A J, Hone J, Dean C R, Basov D N, Pasupathy A N, and Rubio A 2021 Nat. Phys. 17 155
[2] Balents L, Dean C R, Efetov D K, and Young A F 2020 Nat. Phys. 16 725
[3] Mak K F, and Shan J 2022 Nat. Nanotechnol. 17 686
[4] Park H, Cai J Q, Anderson E, Zhang Y N, Zhu J Y, Liu X Y, Wang C, Holtzmann W, Hu C, Liu Z, Taniguchi T, Watanabe K, Chu J H, Cao T, Fu L, Yao W, Chang C Z, Cobden D, Xiao D, and Xu X D 2023 Nature 622 74
[5] Xu F, Sun Z, Jia T T, Liu C, Xu C, Li C S, Gu Y, Watanabe K, Taniguchi T, Tong B, Jia J, Shi Z W, Jiang S, Zhang Y, Liu X, and Li T X 2023 Phys. Rev. X 13 031037
[6] Li X F, Sun R X, Wang S Y, Li X, Liu Z B, and Tian J G 2022 Chin. Phys. Lett. 39 037301
[7] Ma J J, Wang Z Y, Xu S G, Gao Y X, Zhang Y Y, Dai Q, Lin X, Du S X, Ren J, and Gao H J 2022 Chin. Phys. Lett. 39 047403
[8] Bistritzer R, and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
[9] Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, and Jarillo-Herrero P 2021 Science 372 264
[10] Li G H, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J, and Andrei E Y 2010 Nat. Phys. 6 109
[11] Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, and Pasupathy A N 2019 Nature 572 95
[12] Xie Y L, Lian B, Jäck B, Liu X M, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, and Yazdani A 2019 Nature 572 101
[13] Butz B, Dolle C, Niekiel F, Weber K, Waldmann D, Weber H B, Meyer B, and Spiecker E 2014 Nature 505 533
[14] Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, and Zeldov E 2020 Nature 581 47
[15] Grover S, Bocarsly M, Uri A, Stepanov P, Di Battista G, Roy I, Xiao J W, Meltzer A Y, Myasoedov Y, Pareek K, Watanabe K, Taniguchi T, Yan B, Stern A, Berg E, Efetov D K, and Zeldov E 2022 Nat. Phys. 18 885
[16] Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, Alicea J, and Nadj-Perge S 2021 Nature 589 536
[17] Turkel S, Swann J, Zhu Z Y, Christos M, Watanabe K, Taniguchi T, Sachdev S, Scheurer M S, Kaxiras E, Dean C R, and Pasupathy A N 2022 Science 376 193
[18] Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, and Kim P 2019 Nat. Mater. 18 448
[19] Wagner G, Kwan Y H, Bultinck N, Simon S H, and Parameswaran S A 2022 Phys. Rev. Lett. 128 156401
[20] Pantaleón P A, Low T, and Guinea F 2021 Phys. Rev. B 103 205403
[21] de Jong T A, Benschop T, Chen X, Krasovskii E E, de Dood M J A, Tromp R M, Allan M P, and van der Molen S J 2022 Nat. Commun. 13 70
[22] Nakatsuji N, and Koshino M 2022 Phys. Rev. B 105 245408
[23] Kwan Y H, Wagner G, Soejima T, Zaletel M P, Simon S H, Parameswaran S A, and Bultinck N 2021 Phys. Rev. X 11 041063
[24] Kapfer M, Jessen B S, Eisele M E, Fu M, Danielsen D R, Darlington T P, Moore S L, Finney N R, Marchese A, Hsieh V, Majchrzak P, Jiang Z, Biswas D, Dudin P, Avila J, Watanabe K, Taniguchi T, Ulstrup S, Bøggild P, Schuck P J, Basov D N, Hone J, and Dean C R 2023 Science 381 677
[25] Lau C N, Bockrath M W, Mak K F, and Zhang F 2022 Nature 602 41
[26] Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P, and Yacoby A 2021 Nature 600 439
[27] Das I, Lu X B, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A, and Efetov D K 2021 Nat. Phys. 17 710
[28] Saito Y, Ge J Y, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, and Young A F 2021 Nat. Phys. 17 478
[29] Wu S, Zhang Z Y, Watanabe K, Taniguchi T, and Andrei E Y 2021 Nat. Mater. 20 488
[30] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, and Dean C R 2013 Science 342 614
[31] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, and Tutuc E 2016 Nano Lett. 16 1989
[32] Barber M E, Ma E Y, and Shen Z X 2021 Nat. Rev. Phys. 4 61
[33] Ohlberg D A A, Tami D, Gadelha A C, Neto E G S, Santana F C, Miranda D, Avelino W, Watanabe K, Taniguchi T, Campos L C, Ramirez J C, do Rego C G, Jorio A, and Medeiros-Ribeiro G 2021 Nat. Commun. 12 2980
[34] Huang X, Chen L X, Tang S J, Jiang C X, Chen C, Wang H S, Shen Z X, Wang H, and Cui Y T 2021 Nano Lett. 21 4292
[35] Lee K, Utama M I B, Kahn S, Samudrala A, Leconte N, Yang B, Wang S, Watanabe K, Taniguchi T, Altoé M V P, Zhang G, Weber-Bargioni A, Crommie M, Ashby P D, Jung J, Wang F, and Zettl A 2020 Sci. Adv. 6 eabd1919
[36] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, and Kim P 2013 Nature 497 598
[37] Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, and Yazdani A 2020 Nature 588 610
Related articles from Frontiers Journals
[1] Jia-Jun Ma, Zhen-Yu Wang, Shui-Gang Xu, Yu-Xiang Gao, Yu-Yang Zhang, Qing Dai, Xiao Lin, Shi-Xuan Du, Jindong Ren, and Hong-Jun Gao. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(4): 037401
[2] Cheng Zheng, Dapeng Zhao, Xinqiang Cai, Wantong Huang, Fanqi Meng, Qinghua Zhang, Lin Tang, Xiaopeng Hu, Lin Gu, Shuai-Hua Ji, Xi Chen. Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(8): 037401
[3] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 037401
[4] Shuyuan Zhang, Guangyao Miao, Jiaqi Guan, Xiaofeng Xu, Bing Liu, Fang Yang, Weihua Wang, Xuetao Zhu, Jiandong Guo. Superconductivity of the FeSe/SrTiO$_{3}$ Interface in View of BCS–BEC Crossover[J]. Chin. Phys. Lett., 2019, 36(10): 037401
[5] Lai-Lai Li, Yue-Lei Zhao, Xi-Xiang Zhang, Young Sun. Possible Evidence for Spin-Transfer Torque Induced by Spin-Triplet Supercurrents[J]. Chin. Phys. Lett., 2018, 35(7): 037401
[6] Xing-Yuan Hou, Ya-Dong Gu, Zong Wang, Hai Zi, Xiang-De Zhu, Meng-Di Zhang , Chun-Hong Li, Cong Ren, Lei Shan. Proximity-Induced Superconductivity in New Superstructures on 2H-NbSe$_2$ Surface[J]. Chin. Phys. Lett., 2017, 34(7): 037401
[7] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 037401
[8] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of Zero Lattice-Mismatch InAs/GaSb Type-II Superlattice[J]. Chin. Phys. Lett., 2016, 33(12): 037401
[9] PENG Lin**, LIU Yong-Sheng, CAI Chuan-Bing, ZHANG Jin-Cang . Influence of Magnetic Scattering and Interface Transparency on Superconductivity Based on a Ferromagnet/Superconductor Heterostructure[J]. Chin. Phys. Lett., 2011, 28(8): 037401
[10] CHEN Lei-Ming, LI Guang-Cheng, ZHANG Yan, GUO Yan-Feng. Film Thickness Dependence of Rectifying Properties of La1.85Sr0.15CuO4/Nb-SrTiO3 Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 037401
[11] WANG Ai-Jun, CHEN Sheng-Li, DONG Peng, CAI Xiao-Gang, ZHOU Qian, YUAN Gui-Mei, HU Chun-Tian, ZHNG Dao-Zhong. Fabrication of Colloidal Photonic Crystals with Heterostructure by Spin-Coating Method[J]. Chin. Phys. Lett., 2009, 26(2): 037401
[12] ZHOU Zhi-Qiang, XU Ying-Qiang, HAO Rui-Ting, TANG Bao, REN Zheng-Wei, NIU Zhi-Chuan. Molecular Beam Epitaxy of GaSb on GaAs Substrates with AlSb Buffer Layers[J]. Chin. Phys. Lett., 2009, 26(1): 037401
[13] WU Hong-Ye, ZOU Tao, CHENG Zhao-Hua, SUN Young. Vortex Pinning due to Dynamic Spin-Vortex Interaction in aSuperconductor/Ferromagnet Multilayer[J]. Chin. Phys. Lett., 2009, 26(1): 037401
[14] HUANG Yan-Hong, HE Meng, TIAN Huan-Fang, ZHAO Kun, LÜ, Hui-Bin, JIN Kui-Juan, LI Jian-Qi, YANG Guo-Zhen. Laser Molecular Beam Epitaxy of Multilayer Heterostructure SrNb0.05Ti0.95O3/La0.9Sr0.1MnO3 in 10000 Unit-Cell Layers[J]. Chin. Phys. Lett., 2008, 25(9): 037401
[15] JI Yi-Qun, NIU Zhi-Ping, FENG Cui-Di, XING Ding-Yu. Spin-Triplet Andreev Reflection in Ferromagnet/Ferromangnet/s-Wave Superconductor Junctions[J]. Chin. Phys. Lett., 2008, 25(2): 037401
Viewed
Full text


Abstract