CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Magnetism Measurements of Two-Dimensional van der Waals Antiferromagnet CrPS$_{4}$ Using Dynamic Cantilever Magnetometry |
Qi Li1,2, Weili Zhen1, Ning Wang1, Meng Shi1,2, Yang Yu3, Senyang Pan1,2, Lin Deng1,2, Jiaqiang Cai1,2, Kang Wang1*, Lvkuan Zou4*, Zhongming Zeng4, Zhaosheng Wang1, and Jinglei Zhang1* |
1Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China 2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China 3School of Advanced Manufacturing Engineering, Hefei University, Hefei 230601, China 4Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
|
|
Cite this article: |
Qi Li, Weili Zhen, Ning Wang et al 2024 Chin. Phys. Lett. 41 107503 |
|
|
Abstract Recent experimental and theoretical work has focused on two-dimensional van der Waals (2D vdW) magnets due to their potential applications in sensing and spintronics devises. In measurements of these emerging materials, conventional magnetometry often encounters challenges in characterizing the magnetic properties of small-sized vdW materials, especially for antiferromagnets with nearly compensated magnetic moments. Here, we investigate the magnetism of 2D antiferromagnet CrPS$_{4}$ with a thickness of 8 nm by using dynamic cantilever magnetometry (DCM). Through a combination of DCM experiment and the calculation based on a Stoner–Wohlfarth-type model, we unravel the magnetization states in 2D CrPS$_{4}$ antiferromagnet. In the case of $H\parallel c$, a two-stage phase transition is observed. For $H\perp c$, a hump in the effective magnetic restoring force is noted, which implies the presence of spin reorientation as temperature increases. These results demonstrate the benefits of DCM for studying magnetism of 2D magnets.
|
|
Received: 02 September 2024
Published: 29 September 2024
|
|
PACS: |
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
07.10.Cm
|
(Micromechanical devices and systems)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
|
|
|
[1] | Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, and Batzill M 2018 Nat. Nanotechnol. 13 289 |
[2] | Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, and Zhang Y B 2018 Nature 563 94 |
[3] | Gong C and Zhang X 2019 Science 363 706 |
[4] | Jones A M, Yu H Y, Ross J S, Klement P, Ghimire N J, Yan J Q, Mandrus D G, Yao W, and Xu X D 2014 Nat. Phys. 10 130 |
[5] | Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, and Zhang Z D 2018 Nat. Nanotechnol. 13 554 |
[6] | Zhong D, Seyler K L, Linpeng X Y, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C, and Xu X D 2017 Sci. Adv. 3 e1603113 |
[7] | Jin W, Zhang G J, Wu H, Yang L, Zhang W F, and Chang H X 2023 Chin. Phys. Lett. 40 057301 |
[8] | Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265 |
[9] | Miao N H, Xu B, Zhu L G, Zhou J, and Sun Z M 2018 J. Am. Chem. Soc. 140 2417 |
[10] | Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T, and Thygesen K S 2018 2D Mater. 5 042002 |
[11] | Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gaß S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kißner K, Ünzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, and Chulkov E V 2019 Nature 576 416 |
[12] | Tang J, Wu Y D, Wang W W, Kong L Y, Lv B Y, Wei W S, Zang J D, Tian M L, and Du H F 2021 Nat. Nanotechnol. 16 1161 |
[13] | Wang W W, Song D S, Wei W S, Nan P F, Zhang S L, Ge B H, Tian M L, Zang J D, and Du H F 2022 Nat. Commun. 13 1593 |
[14] | Wang H D, Lei P H, Mao X Y, Kong X, Ye X Y, Wang P F, Wang Y, Qin X, Meijer J, Zeng H L, Shi F Z, and Du J F 2022 Chin. Phys. Lett. 39 047601 |
[15] | Uchoa B and Neto A H C 2007 Phys. Rev. Lett. 98 146801 |
[16] | Wiebe C R, Janik J A, MacDougall G J, Luke G M, Garrett J D, Zhou H D, Jo Y J, Balicas L, Qiu Y, Copley J R D, Yamani Z, and Buyers W J L 2007 Nat. Phys. 3 96 |
[17] | Gross B, Philipp S, Josten E, Leliaert J, Wetterskog E, Bergström L, and Poggio M 2021 Phys. Rev. B 103 014402 |
[18] | Weber D P, Rüffer D, Buchter A, Xue F, Russo-Averchi E, Huber R, Berberich P, Arbiol J, Fontcuberta i Morral A, Grundler D, and Poggio M 2012 Nano Lett. 12 6139 |
[19] | Yu Y, Xu F, Wang N, Zou L K, and Xue F 2018 Jpn. J. Appl. Phys. 57 090312 |
[20] | Jang J, Ferguson D G, Vakaryuk V, Budakian R, Chung S B, Goldbart P M, and Maeno Y 2011 Science 331 186 |
[21] | Modic K A, Bachmann M D, Ramshaw B J, Arnold F, Shirer K R, Estry A, Betts J B, Ghimire N J, Bauer E D, Schmidt M, Baenitz M, Svanidze E, McDonald R D, Shekhter A, and Moll P J W 2018 Nat. Commun. 9 3975 |
[22] | Gross B, Philipp S, Geirhos K, Mehlin A, Bordács S, Tsurkan V, Leonov A, Kézsmárki I, and Poggio M 2020 Phys. Rev. B 102 104407 |
[23] | Yu Y, Xu F, Guo S S, Wang N, Zou L K, Wang B M, Li R W, and Xue F 2020 Appl. Phys. Lett. 116 193102 |
[24] | Mehlin A, Gross B, Wyss M, Schefer T, Tütüncüoglu G, Heimbach F, Fontcuberta i Morral A, Grundler D, and Poggio M 2018 Phys. Rev. B 97 134422 |
[25] | Mehlin A, Xue F, Liang D, Du H F, Stolt M J, Jin S, Tian M L, and Poggio M 2015 Nano Lett. 15 4839 |
[26] | Stipe B C, Mamin H J, Stowe T D, Kenny T W, and Rugar D 2001 Phys. Rev. Lett. 86 2874 |
[27] | Xu F, Li H X, Wang N, Wang W J, Xu J M, Zhu W L, Liu Y L, Zhang C J, Qu Z, and Xue F 2023 J. Appl. Phys. 134 163904 |
[28] | Bud'ko S L, Gati E, Slade T J, and Canfield P C 2021 Phys. Rev. B 103 224407 |
[29] | Peng Y, Ding S, Cheng M, Hu Q, Yang J, Wang F, Xue M, Liu Z, Lin Z, Avdeev M, Hou Y, Yang W, Zheng Y, and Yang J 2020 Adv. Mater. 32 2001200 |
[30] | Calder S, Haglund A V, Liu Y, Pajerowski D M, Cao H B, Williams T J, Garlea V O, and Mandrus D 2020 Phys. Rev. B 102 024408 |
[31] | Joe M, Lee H, Alyörük M M, Lee J, Kim S Y, Lee C, and Lee J H 2017 J. Phys.: Condens. Matter 29 405801 |
[32] | Son J, Son S, Park P, Kim M, Tao Z, Oh J, Lee T, Lee S, Kim J, Zhang K, Cho K, Kamiyama T, Lee J H, Mak K F, Shan J, Kim M, Park J G, and Lee J 2021 ACS Nano 15 16904 |
[33] | Lv X W, Lv H L, Huang Y L, Zhang R X, Qin G H, Dong Y H, Liu M, Pei K, Cao G X, Zhang J C, Lai Y X, and Che R C 2024 Nat. Commun. 15 3278 |
[34] | Zhang G J, Luo Q Y, Wen X K, Wu H, Yang L, Jin W, Li L J, Zhang J, Zhang W F, Shu H B, and Chang H X 2023 Chin. Phys. Lett. 40 117501 |
[35] | Liu J H, Wang Z D, Xu T, Zhou H G, Zhao L, Je S G, Im M Y, Fang L, and Jiang W J 2022 Chin. Phys. Lett. 39 017501 |
[36] | López-Paz S A, Guguchia Z, Pomjakushin V Y, Witteveen C, Cervellino A, Luetkens H, Casati N, Morpurgo A F, and Von Rohr F O 2022 Nat. Commun. 13 4745 |
[37] | Wang X Y, Gong D L, Liu B, Ma X Y, Zhao J Y, Wang P Y, Sheng Y T, Guo J, Sun L L, Zhang W, Lai X C, Tan S Y, Yang Y F, and Li S L 2022 Chin. Phys. Lett. 39 107101 |
[38] | Posey V A, Turkel S, Rezaee M, Devarakonda A, Kundu A K, Ong C S, Thinel M, Chica D G, Vitalone R A, Jing R, Xu S, Needell D R, Meirzadeh E, Feuer M L, Jindal A, Cui X, Valla T, Thunström P, Yilmaz T, Vescovo E, Graf D, Zhu X, Scheie A, May A F, Eriksson O, Basov D N, Dean C R, Rubio A, Kim P, Ziebel M E, Millis A J, Pasupathy A N, and Roy X 2024 Nature 625 483 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|