Chin. Phys. Lett.  2024, Vol. 41 Issue (10): 107503    DOI: 10.1088/0256-307X/41/10/107503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetism Measurements of Two-Dimensional van der Waals Antiferromagnet CrPS$_{4}$ Using Dynamic Cantilever Magnetometry
Qi Li1,2, Weili Zhen1, Ning Wang1, Meng Shi1,2, Yang Yu3, Senyang Pan1,2, Lin Deng1,2, Jiaqiang Cai1,2, Kang Wang1*, Lvkuan Zou4*, Zhongming Zeng4, Zhaosheng Wang1, and Jinglei Zhang1*
1Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
3School of Advanced Manufacturing Engineering, Hefei University, Hefei 230601, China
4Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Cite this article:   
Qi Li, Weili Zhen, Ning Wang et al  2024 Chin. Phys. Lett. 41 107503
Download: PDF(6260KB)   PDF(mobile)(6491KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recent experimental and theoretical work has focused on two-dimensional van der Waals (2D vdW) magnets due to their potential applications in sensing and spintronics devises. In measurements of these emerging materials, conventional magnetometry often encounters challenges in characterizing the magnetic properties of small-sized vdW materials, especially for antiferromagnets with nearly compensated magnetic moments. Here, we investigate the magnetism of 2D antiferromagnet CrPS$_{4}$ with a thickness of 8 nm by using dynamic cantilever magnetometry (DCM). Through a combination of DCM experiment and the calculation based on a Stoner–Wohlfarth-type model, we unravel the magnetization states in 2D CrPS$_{4}$ antiferromagnet. In the case of $H\parallel c$, a two-stage phase transition is observed. For $H\perp c$, a hump in the effective magnetic restoring force is noted, which implies the presence of spin reorientation as temperature increases. These results demonstrate the benefits of DCM for studying magnetism of 2D magnets.
Received: 02 September 2024      Published: 29 September 2024
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  07.10.Cm (Micromechanical devices and systems)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.50.Ee (Antiferromagnetics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/10/107503       OR      https://cpl.iphy.ac.cn/Y2024/V41/I10/107503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi Li
Weili Zhen
Ning Wang
Meng Shi
Yang Yu
Senyang Pan
Lin Deng
Jiaqiang Cai
Kang Wang
Lvkuan Zou
Zhongming Zeng
Zhaosheng Wang
and Jinglei Zhang
[1] Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, and Batzill M 2018 Nat. Nanotechnol. 13 289
[2] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, and Zhang Y B 2018 Nature 563 94
[3] Gong C and Zhang X 2019 Science 363 706
[4] Jones A M, Yu H Y, Ross J S, Klement P, Ghimire N J, Yan J Q, Mandrus D G, Yao W, and Xu X D 2014 Nat. Phys. 10 130
[5] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, and Zhang Z D 2018 Nat. Nanotechnol. 13 554
[6] Zhong D, Seyler K L, Linpeng X Y, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C, and Xu X D 2017 Sci. Adv. 3 e1603113
[7] Jin W, Zhang G J, Wu H, Yang L, Zhang W F, and Chang H X 2023 Chin. Phys. Lett. 40 057301
[8] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265
[9] Miao N H, Xu B, Zhu L G, Zhou J, and Sun Z M 2018 J. Am. Chem. Soc. 140 2417
[10] Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T, and Thygesen K S 2018 2D Mater. 5 042002
[11] Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gaß S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kißner K, Ünzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, and Chulkov E V 2019 Nature 576 416
[12] Tang J, Wu Y D, Wang W W, Kong L Y, Lv B Y, Wei W S, Zang J D, Tian M L, and Du H F 2021 Nat. Nanotechnol. 16 1161
[13] Wang W W, Song D S, Wei W S, Nan P F, Zhang S L, Ge B H, Tian M L, Zang J D, and Du H F 2022 Nat. Commun. 13 1593
[14] Wang H D, Lei P H, Mao X Y, Kong X, Ye X Y, Wang P F, Wang Y, Qin X, Meijer J, Zeng H L, Shi F Z, and Du J F 2022 Chin. Phys. Lett. 39 047601
[15] Uchoa B and Neto A H C 2007 Phys. Rev. Lett. 98 146801
[16] Wiebe C R, Janik J A, MacDougall G J, Luke G M, Garrett J D, Zhou H D, Jo Y J, Balicas L, Qiu Y, Copley J R D, Yamani Z, and Buyers W J L 2007 Nat. Phys. 3 96
[17] Gross B, Philipp S, Josten E, Leliaert J, Wetterskog E, Bergström L, and Poggio M 2021 Phys. Rev. B 103 014402
[18] Weber D P, Rüffer D, Buchter A, Xue F, Russo-Averchi E, Huber R, Berberich P, Arbiol J, Fontcuberta i Morral A, Grundler D, and Poggio M 2012 Nano Lett. 12 6139
[19] Yu Y, Xu F, Wang N, Zou L K, and Xue F 2018 Jpn. J. Appl. Phys. 57 090312
[20] Jang J, Ferguson D G, Vakaryuk V, Budakian R, Chung S B, Goldbart P M, and Maeno Y 2011 Science 331 186
[21] Modic K A, Bachmann M D, Ramshaw B J, Arnold F, Shirer K R, Estry A, Betts J B, Ghimire N J, Bauer E D, Schmidt M, Baenitz M, Svanidze E, McDonald R D, Shekhter A, and Moll P J W 2018 Nat. Commun. 9 3975
[22] Gross B, Philipp S, Geirhos K, Mehlin A, Bordács S, Tsurkan V, Leonov A, Kézsmárki I, and Poggio M 2020 Phys. Rev. B 102 104407
[23] Yu Y, Xu F, Guo S S, Wang N, Zou L K, Wang B M, Li R W, and Xue F 2020 Appl. Phys. Lett. 116 193102
[24] Mehlin A, Gross B, Wyss M, Schefer T, Tütüncüoglu G, Heimbach F, Fontcuberta i Morral A, Grundler D, and Poggio M 2018 Phys. Rev. B 97 134422
[25] Mehlin A, Xue F, Liang D, Du H F, Stolt M J, Jin S, Tian M L, and Poggio M 2015 Nano Lett. 15 4839
[26] Stipe B C, Mamin H J, Stowe T D, Kenny T W, and Rugar D 2001 Phys. Rev. Lett. 86 2874
[27] Xu F, Li H X, Wang N, Wang W J, Xu J M, Zhu W L, Liu Y L, Zhang C J, Qu Z, and Xue F 2023 J. Appl. Phys. 134 163904
[28] Bud'ko S L, Gati E, Slade T J, and Canfield P C 2021 Phys. Rev. B 103 224407
[29] Peng Y, Ding S, Cheng M, Hu Q, Yang J, Wang F, Xue M, Liu Z, Lin Z, Avdeev M, Hou Y, Yang W, Zheng Y, and Yang J 2020 Adv. Mater. 32 2001200
[30] Calder S, Haglund A V, Liu Y, Pajerowski D M, Cao H B, Williams T J, Garlea V O, and Mandrus D 2020 Phys. Rev. B 102 024408
[31] Joe M, Lee H, Alyörük M M, Lee J, Kim S Y, Lee C, and Lee J H 2017 J. Phys.: Condens. Matter 29 405801
[32] Son J, Son S, Park P, Kim M, Tao Z, Oh J, Lee T, Lee S, Kim J, Zhang K, Cho K, Kamiyama T, Lee J H, Mak K F, Shan J, Kim M, Park J G, and Lee J 2021 ACS Nano 15 16904
[33] Lv X W, Lv H L, Huang Y L, Zhang R X, Qin G H, Dong Y H, Liu M, Pei K, Cao G X, Zhang J C, Lai Y X, and Che R C 2024 Nat. Commun. 15 3278
[34] Zhang G J, Luo Q Y, Wen X K, Wu H, Yang L, Jin W, Li L J, Zhang J, Zhang W F, Shu H B, and Chang H X 2023 Chin. Phys. Lett. 40 117501
[35] Liu J H, Wang Z D, Xu T, Zhou H G, Zhao L, Je S G, Im M Y, Fang L, and Jiang W J 2022 Chin. Phys. Lett. 39 017501
[36] López-Paz S A, Guguchia Z, Pomjakushin V Y, Witteveen C, Cervellino A, Luetkens H, Casati N, Morpurgo A F, and Von Rohr F O 2022 Nat. Commun. 13 4745
[37] Wang X Y, Gong D L, Liu B, Ma X Y, Zhao J Y, Wang P Y, Sheng Y T, Guo J, Sun L L, Zhang W, Lai X C, Tan S Y, Yang Y F, and Li S L 2022 Chin. Phys. Lett. 39 107101
[38] Posey V A, Turkel S, Rezaee M, Devarakonda A, Kundu A K, Ong C S, Thinel M, Chica D G, Vitalone R A, Jing R, Xu S, Needell D R, Meirzadeh E, Feuer M L, Jindal A, Cui X, Valla T, Thunström P, Yilmaz T, Vescovo E, Graf D, Zhu X, Scheie A, May A F, Eriksson O, Basov D N, Dean C R, Rubio A, Kim P, Ziebel M E, Millis A J, Pasupathy A N, and Roy X 2024 Nature 625 483
Related articles from Frontiers Journals
[1] Xiaomin Zhang, Jian Wang, Wenkai Zhu, Jiaqian Zhang, Weihao Li, Jing Zhang, and Kaiyou Wang. Giant Magneto-Optical Effect in van der Waals Room-Temperature Ferromagnet Fe$_{3}$GaTe$_{2}$[J]. Chin. Phys. Lett., 2024, 41(6): 107503
[2] Deping Guo, Cong Wang, Lvjin Wang, Yunhao Lu, Hua Wu, Yanning Zhang, and Wei Ji. Orbital-Ordering Driven Simultaneous Tunability of Magnetism and Electric Polarization in Strained Monolayer VCl$_{3}$[J]. Chin. Phys. Lett., 2024, 41(4): 107503
[3] Han-Xu Zhang, Sen-Yin Zhu, Jin Zhan, Xian-Jie Wang, Yi Wang, Tai Yao, N. I. Mezin, and Bo Song. Observation of Enhanced Faraday Effect in Eu-Doped Ce:YIG Thin Films[J]. Chin. Phys. Lett., 2023, 40(12): 107503
[4] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 107503
[5] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 107503
[6] Yu-Hao Shen, Wen-Yi Tong, He Hu, Jun-Ding Zheng, and Chun-Gang Duan. Exotic Dielectric Behaviors Induced by Pseudo-Spin Texture in Magnetic Twisted Bilayer[J]. Chin. Phys. Lett., 2021, 38(3): 107503
[7] Matthias Batzill. Search for 2D Ferromagnets: Molecular Beam Epitaxy is a Critical Tool[J]. Chin. Phys. Lett., 2020, 37(8): 107503
[8] Jin Yang, Jian Li, Liangzhong Lin, and Jia-Ji Zhu. An Origin of Dzyaloshinskii–Moriya Interaction at Graphene-Ferromagnet Interfaces Due to the Intralayer RKKY/BR Interaction[J]. Chin. Phys. Lett., 2020, 37(8): 107503
[9] Qian-Qian Yuan, Zhaopeng Guo, Zhi-Qiang Shi, Hui Zhao, Zhen-Yu Jia, Qianjin Wang, Jian Sun, Di Wu, and Shao-Chun Li. Ferromagnetic MnSn Monolayer Epitaxially Grown on Silicon Substrate[J]. Chin. Phys. Lett., 2020, 37(7): 107503
[10] Shan Li, Jun Lu, Lian-Jun Wen, Dong Pan, Hai-Long Wang, Da-Hai Wei, and Jian-Hua Zhao. Unusual Anomalous Hall Effect in a Co$_{2}$MnSi/MnGa/Pt Trilayer[J]. Chin. Phys. Lett., 2020, 37(7): 107503
[11] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 107503
[12] Jia-Lin Ma, Hai-Long Wang, Xing-Min Zhang, Shuai Yan, Wen-Sheng Yan, Jian-Hua Zhao. Epitaxial Growth and Magnetic Properties of NiMnAs Films on GaAs Substrates[J]. Chin. Phys. Lett., 2019, 36(1): 107503
[13] Yong-Le Lou, Yu-Ming Zhang, Hui Guo, Da-Qing Xu, Yi-Men Zhang. Effects of Fe-Oxide and Mg Layer Insertion on Tunneling Magnetoresistance Properties of CoFeB/MgO/CoFeB Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2016, 33(11): 107503
[14] Shi-Zhu Qiao, Quan-Nian Ren, Run-Run Hao, Hai Zhong, Yun Kang, Shi-Shou Kang, Yu-Feng Qin, Shu-Yun Yu, Guang-Bing Han, Shi-Shen Yan, Liang-Mo Mei. Broad-Band FMR Linewidth of Co2MnSi Thin Films with Low Damping Factor: The Role of Two-Magnon Scattering[J]. Chin. Phys. Lett., 2016, 33(04): 107503
[15] Jian-Hui Yuan, Ni Chen, Hua Mo, Yan Zhang, Zhi-Hai Zhang. Tunneling Negative Magnetoresistance via $\delta$ Doping in a Graphene-Based Magnetic Tunnel Junction[J]. Chin. Phys. Lett., 2016, 33(03): 107503
Viewed
Full text


Abstract