Chin. Phys. Lett.  2024, Vol. 41 Issue (10): 108201    DOI: 10.1088/0256-307X/41/10/108201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
First-Principles Studies of Structural Evolutions in Cathode Materials LiMO$_{2}$ (M = Co, Mn, Ni)
Yufeng Sun1,2, Xin-Gao Gong1,2, and Ji-Hui Yang1,2*
1Key Laboratory for Computational Physical Sciences (MOE), Department of Physics, Fudan University, Shanghai 200433, China
2Shanghai Qizhi Institution, Shanghai 200232, China
Cite this article:   
Yufeng Sun, Xin-Gao Gong, and Ji-Hui Yang 2024 Chin. Phys. Lett. 41 108201
Download: PDF(2630KB)   PDF(mobile)(2621KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We explore the structural evolutions of stoichiometric LiMO$_{2}$ using the first-principles calculations combined with the cluster expansion method. We automatically obtain the ground state structures of the stoichiometric LiMO$_{2}$ by just considering the cation orderings in the quasi rock-salt structures and the following structural relaxations due to both the atomic size mismatches and the Jahn–Teller distortions. We point out that, on the one hand, the cation orderings are mainly determined by the nearest, the second nearest, and the third nearest cation interactions and can be obtained from the ‘phase diagram’ we have built using the relative strengths of effective cluster interaction (ECI). On the other hand, the structural relaxations are dominated by the crystal field splitting (CFS) energies, i.e., structures with larger CFS energies are more stable. By calculating the ECIs and CFS energies for various structures of LiMO$_{2}$, we clearly show how ECI and CFS play roles in determining the structural evolution mechanism of these systems.
Received: 19 June 2024      Published: 22 October 2024
PACS:  82.47.Aa (Lithium-ion batteries)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/10/108201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I10/108201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yufeng Sun
Xin-Gao Gong
and Ji-Hui Yang
[1] Flores E, Novák P, Aschauer U, and Berg E J 2020 Chem. Mater. 32 186
[2] Chakraborty A, Kunnikuruvan S, Dixit M, and Major D T 2020 Israel J. Chem. 60 850
[3] de Biasi L, Schwarz B, Brezesinski T, Hartmann P, Janek J, and Ehrenberg H 2019 Adv. Mater. 31 1900985
[4] Rossen E, Reimers J, and Dahn J 1993 Solid State Ionics 62 53
[5] Tosin Paese L, Zeller P, Chatain S, and Guéneau C 2023 Phys. Chem. Chem. Phys. 25 20641
[6] Chen Y C, Huo M, Liu Y, Chen T, Leng C C, Li Q, Sun Z L, and Song L J 2015 Chin. Phys. Lett. 32 017102
[7] Wang C, Han L, Zhang R, Cheng H, Mu L, Kisslinger K, Zou P, Ren Y, Cao P, Lin F, and Xin H L 2021 Matter 4 2013
[8] Sicolo S, Mock M, Bianchini M, and Albe K 2020 Chem. Mater. 32 10096
[9] Laks D B, Ferreira L G, Froyen S, and Zunger A 1992 Phys. Rev. B 46 12587
[10] Qin L X, Liang H P, and Jiang R L 2020 Chin. Phys. Lett. 37 057101
[11] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[12] Blöchl P E 1994 Phys. Rev. B 50 17953
[13] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[14] Anisimov V I, Zaanen J, and Andersen O K 1991 Phys. Rev. B 44 943
[15] Liechtenstein A I, Anisimov V I, and Zaanen J 1995 Phys. Rev. B 52 R5467
[16] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, and Sutton A P 1998 Phys. Rev. B 57 1505
[17] Wang L, Maxisch T, and Ceder G 2006 Phys. Rev. B 73 195107
[18] Barton P T, Premchand Y D, Chater P A, Seshadri R, and Rosseinsky M J 2013 Chem. - Eur. J. 19 14521
[19] Thackeray M M 1997 Prog. Solid State Chem. 25 1
[20] Henkelman G, Uberuaga B P, and Jónsson H 2000 J. Chem. Phys. 113 9901
[21] Yu J, Wang D, Wang G, Cui Y, and Shi S 2023 Adv. Mater. 35 2209210
[22] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C, and Xiao R 2016 Chin. Phys. B 25 018212
[23] Wang D, Liu L M, Zhao S J, Li B H, Liu H, and Lang X F 2013 Phys. Chem. Chem. Phys. 15 9075
[24] Xiong F, Yan H J, Chen Y, Xu B, Le J X, and Ouyang C Y 2012 Int. J Electrochem. Sci. 7 9390
[25] Kang K and Ceder G 2006 Phys. Rev. B 74 094105
[26] Zhu X, Chen N, Lian F, Song Y, and Li Y 2011 Chin. Sci. Bull. 56 3229
[27] van de Walle A, Asta M, and Ceder G 2002 Calphad 26 539
[28] Wolverton C and Zunger A 1998 Phys. Rev. B 57 2242
[29] Antolini E 2004 Solid State Ionics 170 159
[30] Ammundsen B, Desilvestro J, Groutso T, Hassell D, Metson J B, Regan E, Steiner R, and Pickering P J 2000 J. Electrochem. Soc. 147 4078
[31] Hirano A, Kanno R, Kawamoto Y, Takeda Y, Yamaura K, Takano M, Ohyama K, Ohashi M, and Yamaguchi Y 1995 Solid State Ionics 78 123
[32] Kim S, Hegde V I, Yao Z, Lu Z, Amsler M, He J, Hao S, Croy J R, Lee E, Thackeray M M, and Wolverton C 2018 ACS Appl. Mater. & Interfaces 10 13479
[33] Li W, Reimers J N, and Dahn J R 1994 Phys. Rev. B 49 826
[34] Kang S G, Kang S Y, Ryu K S, and Chang S H 1999 Solid State Ionics 120 155
[35] Van Der Ven A and Ceder G 2001 J. Power Sources 97–98 529
[36] Wei Y, Zheng J, Cui S, Song X, Su Y, Deng W, Wu Z, Wang X, Wang W, Rao M, Lin Y, Wang C, Amine K, and Pan F 2015 J. Am. Chem. Soc. 137 8364
[37] Ning F, Li S, Xu B, and Ouyang C 2014 Solid State Ionics 263 46
[38] Kang K, Morgan D, and Ceder G 2009 Phys. Rev. B 79 014305
[39] Moradabadi A, Kaghazchi P, Rohrer J, and Albe K 2018 Phys. Rev. Mater. 2 015402
[40] Yazami R, Lebrun N, Bonneau M, and Molteni M 1995 J. Power Sources 54 389
[41] Wang J, Zhao N, and Guo X 2024 Chin. Phys. Lett. 41 078201
[42] Gai J, Yang J, Yang W, Li Q, Wu X, and Li H 2023 Chin. Phys. Lett. 40 086101
[43] Li P, Feng Z, Cheng T, Lyu Y, and Guo B 2021 Chin. Phys. Lett. 38 088201
[44] Prasad R, Benedek R, and Thackeray M M 2005 Phys. Rev. B 71 134111
[45] Urban A, Abdellahi A, Dacek S, Artrith N, and Ceder G 2017 Phys. Rev. Lett. 119 176402
[46] Gummow R J, de Kock A, and Thackeray M M 1994 Solid State Ionics 69 59
[47] Jang Y 2002 Solid State Ionics 149 201
[48] Dang H T, Ai X, Millis A J, and Marianetti C A 2014 Phys. Rev. B 90 125114
[49] Kim B, Liu P, Tomczak J M, and Franchini C 2018 Phys. Rev. B 98 075130
[50] Shulman R G and Sugano S 1961 Phys. Rev. Lett. 7 157
[51] Wang D, Jiao Y, Shi W, Pu B, Ning F, Yi J, Ren Y, Yu J, Li Y, Wang H, Li B, Li Y, Nan C, Chen L, and Shi S 2023 Prog. Mater. Sci. 133 101055
[52] Wang D, Yu J, Yin X, Shao S, Li Q, Wang Y, Avdeev M, Chen L, and Shi S 2023 Natl. Sci. Rev. 10 nwad010
[53] Arumugam K, Renock D, and Becker U 2019 Phys. Chem. Chem. Phys. 21 6415
[54] Pan R, Jo E, Cui Z, and Manthiram A 2023 Adv. Funct. Mater. 33 2211461
[55] Wang D, Zhou H, Jiao Y, Wang J M, Shi W, Pu B W, Li M Q, Ning F H, Ren Y, Yu J, Li Y J, Li B, and Shi S Q 2022 Energy Storage Sci. Technol. 11 409
[56] Zhang H, Liu H, Piper L F J, Whittingham M S, and Zhou G 2022 Chem. Rev. 122 5641
[57] Carlier D, Ménétrier M, and Delmas C 2010 J. Phys. Chem. C 114 4749
Related articles from Frontiers Journals
[1] Zipei Yan, Qiyu Wang, Xiqian Yu, Jizhou Li, and Michael K.-P. Ng. Compression of Battery X-Ray Tomography Data with Machine Learning[J]. Chin. Phys. Lett., 2024, 41(9): 108201
[2] Zihan Xu, Hanwen An, and Jiajun Wang. Multi-Scale X-Ray Imaging Technologies for Rechargeable Batteries[J]. Chin. Phys. Lett., 2024, 41(8): 108201
[3] Jianqun Wang, Ning Zhao, and Xiangxin Guo. Long-Cycle Lithium Batteries with LiNi$_{0.8}$Co$_{0.1}$Mn$_{0.1}$O$_{2}$ Cathodes above 4.5 V Enabled by Uniform Coating of Nanosized Garnet Electrolytes[J]. Chin. Phys. Lett., 2024, 41(7): 108201
[4] Jing-Yuan Ma, Yu-Li Huang, Han-Jie Zhou, Yuan-Yuan Wang, Jian-Gang Li, Xi-Qian Yu, Hong Li, and Yan Li. Ferroelectric Ceramic Materials Enable High-Performance Organic-Inorganic Composite Electrolytes in Solid-State Lithium Metal Batteries[J]. Chin. Phys. Lett., 2024, 41(7): 108201
[5] Jianli Gai, Jirong Yang, Wei Yang, Quan Li, Xiaodong Wu, and Hong Li. Lithium Ion Batteries Operated at $-100\,^{\circ}\!$C[J]. Chin. Phys. Lett., 2023, 40(8): 108201
[6] Quan Li, Yang Yang, Xiqian Yu, and Hong Li. A 700 W$\cdot$h$\cdot$kg$^{-1}$ Rechargeable Pouch Type Lithium Battery[J]. Chin. Phys. Lett., 2023, 40(4): 108201
[7] Qingyu Dong, Ruowei Yi, Jizhen Qi, Yanbin Shen, and Liwei Chen. Probing the Air Storage Failure Mechanism of Ni-Rich Layered Cathode Materials[J]. Chin. Phys. Lett., 2022, 39(3): 108201
[8] Di-Xing Ni, Yao-Dong Liu, Zhi Deng, Dian-Cheng Chen, Xin-Xin Zhang, Tao Wang, Shuai Li, and Yu-Sheng Zhao. Wet Mechanical Milling Induced Phase Transition to Cubic Anti-Perovskite Li$_{2}$OHCl[J]. Chin. Phys. Lett., 2022, 39(2): 108201
[9] Le-Qing Zhang, Qing-Tao Xia, Zhao-Hui Li, Yuan-Yuan Han, Xi-Xiang Xu, Xin-Long Zhao, Xia Wang, Yuan-Yuan Pan, Hong-Sen Li, and Qiang Li. Electrochemical Role of Transition Metals in Sn–Fe Alloy Revealed by Operando Magnetometry[J]. Chin. Phys. Lett., 2022, 39(2): 108201
[10] Zhekai Zhang, Jiyu Tian, Junfei Chen, Yugui He, Chaoyang Liu, Xinmiao Liang, and Jiwen Feng. Li Plating on Carbon Electrode Surface Probed by Low-Field Dynamic Nuclear Polarization $^{7}$Li NMR[J]. Chin. Phys. Lett., 2021, 38(12): 108201
[11] Panpan Li , Zhijie Feng , Tao Cheng , Yingchun Lyu, and Bingkun Guo. Effect of Fluorine Substitution on the Electrochemical Property and Structural Stability of a Lithium-Excess Cation Disordered Rock-Salt Cathode[J]. Chin. Phys. Lett., 2021, 38(8): 108201
[12] Jiachao Yang, Jian Zou, Chun Luo, Qiwen Ran, Xin Wang, Pengyu Chen, Chuan Hu, Xiaobin Niu, Haining Ji, and Liping Wang. FeSO$_{4}$ as a Novel Li-Ion Battery Cathode[J]. Chin. Phys. Lett., 2021, 38(6): 108201
[13] Changdong Qin, Le Wang, Pengfei Yan, Yingge Du, and Manling Sui. LiCoO$_{2}$ Epitaxial Film Enabling Precise Analysis of Interfacial Degradations[J]. Chin. Phys. Lett., 2021, 38(6): 108201
[14] Haijuan Wang, Xiao Lan, Yao Huang, Xunyong Jiang. Lithium Storage Property of Graphite/AlCuFe Quasicrystal Composites[J]. Chin. Phys. Lett., 2019, 36(9): 108201
[15] Li-Wei Jiang, Ya-Xiang Lu, Yue-Sheng Wang, Li-Lu Liu, Xing-Guo Qi, Cheng-Long Zhao, Li-Quan Chen, Yong-Sheng Hu. A High-Temperature $\beta$-Phase NaMnO$_{2}$ Stabilized by Cu Doping and Its Na Storage Properties[J]. Chin. Phys. Lett., 2018, 35(4): 108201
Viewed
Full text


Abstract