CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
First-Principles Studies of Structural Evolutions in Cathode Materials LiMO$_{2}$ (M = Co, Mn, Ni) |
Yufeng Sun1,2, Xin-Gao Gong1,2, and Ji-Hui Yang1,2* |
1Key Laboratory for Computational Physical Sciences (MOE), Department of Physics, Fudan University, Shanghai 200433, China 2Shanghai Qizhi Institution, Shanghai 200232, China
|
|
Cite this article: |
Yufeng Sun, Xin-Gao Gong, and Ji-Hui Yang 2024 Chin. Phys. Lett. 41 108201 |
|
|
Abstract We explore the structural evolutions of stoichiometric LiMO$_{2}$ using the first-principles calculations combined with the cluster expansion method. We automatically obtain the ground state structures of the stoichiometric LiMO$_{2}$ by just considering the cation orderings in the quasi rock-salt structures and the following structural relaxations due to both the atomic size mismatches and the Jahn–Teller distortions. We point out that, on the one hand, the cation orderings are mainly determined by the nearest, the second nearest, and the third nearest cation interactions and can be obtained from the ‘phase diagram’ we have built using the relative strengths of effective cluster interaction (ECI). On the other hand, the structural relaxations are dominated by the crystal field splitting (CFS) energies, i.e., structures with larger CFS energies are more stable. By calculating the ECIs and CFS energies for various structures of LiMO$_{2}$, we clearly show how ECI and CFS play roles in determining the structural evolution mechanism of these systems.
|
|
Received: 19 June 2024
Published: 22 October 2024
|
|
PACS: |
82.47.Aa
|
(Lithium-ion batteries)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
|
|
|
[1] | Flores E, Novák P, Aschauer U, and Berg E J 2020 Chem. Mater. 32 186 |
[2] | Chakraborty A, Kunnikuruvan S, Dixit M, and Major D T 2020 Israel J. Chem. 60 850 |
[3] | de Biasi L, Schwarz B, Brezesinski T, Hartmann P, Janek J, and Ehrenberg H 2019 Adv. Mater. 31 1900985 |
[4] | Rossen E, Reimers J, and Dahn J 1993 Solid State Ionics 62 53 |
[5] | Tosin Paese L, Zeller P, Chatain S, and Guéneau C 2023 Phys. Chem. Chem. Phys. 25 20641 |
[6] | Chen Y C, Huo M, Liu Y, Chen T, Leng C C, Li Q, Sun Z L, and Song L J 2015 Chin. Phys. Lett. 32 017102 |
[7] | Wang C, Han L, Zhang R, Cheng H, Mu L, Kisslinger K, Zou P, Ren Y, Cao P, Lin F, and Xin H L 2021 Matter 4 2013 |
[8] | Sicolo S, Mock M, Bianchini M, and Albe K 2020 Chem. Mater. 32 10096 |
[9] | Laks D B, Ferreira L G, Froyen S, and Zunger A 1992 Phys. Rev. B 46 12587 |
[10] | Qin L X, Liang H P, and Jiang R L 2020 Chin. Phys. Lett. 37 057101 |
[11] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[12] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[13] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[14] | Anisimov V I, Zaanen J, and Andersen O K 1991 Phys. Rev. B 44 943 |
[15] | Liechtenstein A I, Anisimov V I, and Zaanen J 1995 Phys. Rev. B 52 R5467 |
[16] | Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, and Sutton A P 1998 Phys. Rev. B 57 1505 |
[17] | Wang L, Maxisch T, and Ceder G 2006 Phys. Rev. B 73 195107 |
[18] | Barton P T, Premchand Y D, Chater P A, Seshadri R, and Rosseinsky M J 2013 Chem. - Eur. J. 19 14521 |
[19] | Thackeray M M 1997 Prog. Solid State Chem. 25 1 |
[20] | Henkelman G, Uberuaga B P, and Jónsson H 2000 J. Chem. Phys. 113 9901 |
[21] | Yu J, Wang D, Wang G, Cui Y, and Shi S 2023 Adv. Mater. 35 2209210 |
[22] | Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C, and Xiao R 2016 Chin. Phys. B 25 018212 |
[23] | Wang D, Liu L M, Zhao S J, Li B H, Liu H, and Lang X F 2013 Phys. Chem. Chem. Phys. 15 9075 |
[24] | Xiong F, Yan H J, Chen Y, Xu B, Le J X, and Ouyang C Y 2012 Int. J Electrochem. Sci. 7 9390 |
[25] | Kang K and Ceder G 2006 Phys. Rev. B 74 094105 |
[26] | Zhu X, Chen N, Lian F, Song Y, and Li Y 2011 Chin. Sci. Bull. 56 3229 |
[27] | van de Walle A, Asta M, and Ceder G 2002 Calphad 26 539 |
[28] | Wolverton C and Zunger A 1998 Phys. Rev. B 57 2242 |
[29] | Antolini E 2004 Solid State Ionics 170 159 |
[30] | Ammundsen B, Desilvestro J, Groutso T, Hassell D, Metson J B, Regan E, Steiner R, and Pickering P J 2000 J. Electrochem. Soc. 147 4078 |
[31] | Hirano A, Kanno R, Kawamoto Y, Takeda Y, Yamaura K, Takano M, Ohyama K, Ohashi M, and Yamaguchi Y 1995 Solid State Ionics 78 123 |
[32] | Kim S, Hegde V I, Yao Z, Lu Z, Amsler M, He J, Hao S, Croy J R, Lee E, Thackeray M M, and Wolverton C 2018 ACS Appl. Mater. & Interfaces 10 13479 |
[33] | Li W, Reimers J N, and Dahn J R 1994 Phys. Rev. B 49 826 |
[34] | Kang S G, Kang S Y, Ryu K S, and Chang S H 1999 Solid State Ionics 120 155 |
[35] | Van Der Ven A and Ceder G 2001 J. Power Sources 97–98 529 |
[36] | Wei Y, Zheng J, Cui S, Song X, Su Y, Deng W, Wu Z, Wang X, Wang W, Rao M, Lin Y, Wang C, Amine K, and Pan F 2015 J. Am. Chem. Soc. 137 8364 |
[37] | Ning F, Li S, Xu B, and Ouyang C 2014 Solid State Ionics 263 46 |
[38] | Kang K, Morgan D, and Ceder G 2009 Phys. Rev. B 79 014305 |
[39] | Moradabadi A, Kaghazchi P, Rohrer J, and Albe K 2018 Phys. Rev. Mater. 2 015402 |
[40] | Yazami R, Lebrun N, Bonneau M, and Molteni M 1995 J. Power Sources 54 389 |
[41] | Wang J, Zhao N, and Guo X 2024 Chin. Phys. Lett. 41 078201 |
[42] | Gai J, Yang J, Yang W, Li Q, Wu X, and Li H 2023 Chin. Phys. Lett. 40 086101 |
[43] | Li P, Feng Z, Cheng T, Lyu Y, and Guo B 2021 Chin. Phys. Lett. 38 088201 |
[44] | Prasad R, Benedek R, and Thackeray M M 2005 Phys. Rev. B 71 134111 |
[45] | Urban A, Abdellahi A, Dacek S, Artrith N, and Ceder G 2017 Phys. Rev. Lett. 119 176402 |
[46] | Gummow R J, de Kock A, and Thackeray M M 1994 Solid State Ionics 69 59 |
[47] | Jang Y 2002 Solid State Ionics 149 201 |
[48] | Dang H T, Ai X, Millis A J, and Marianetti C A 2014 Phys. Rev. B 90 125114 |
[49] | Kim B, Liu P, Tomczak J M, and Franchini C 2018 Phys. Rev. B 98 075130 |
[50] | Shulman R G and Sugano S 1961 Phys. Rev. Lett. 7 157 |
[51] | Wang D, Jiao Y, Shi W, Pu B, Ning F, Yi J, Ren Y, Yu J, Li Y, Wang H, Li B, Li Y, Nan C, Chen L, and Shi S 2023 Prog. Mater. Sci. 133 101055 |
[52] | Wang D, Yu J, Yin X, Shao S, Li Q, Wang Y, Avdeev M, Chen L, and Shi S 2023 Natl. Sci. Rev. 10 nwad010 |
[53] | Arumugam K, Renock D, and Becker U 2019 Phys. Chem. Chem. Phys. 21 6415 |
[54] | Pan R, Jo E, Cui Z, and Manthiram A 2023 Adv. Funct. Mater. 33 2211461 |
[55] | Wang D, Zhou H, Jiao Y, Wang J M, Shi W, Pu B W, Li M Q, Ning F H, Ren Y, Yu J, Li Y J, Li B, and Shi S Q 2022 Energy Storage Sci. Technol. 11 409 |
[56] | Zhang H, Liu H, Piper L F J, Whittingham M S, and Zhou G 2022 Chem. Rev. 122 5641 |
[57] | Carlier D, Ménétrier M, and Delmas C 2010 J. Phys. Chem. C 114 4749 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|