Chin. Phys. Lett.  2024, Vol. 41 Issue (10): 104201    DOI: 10.1088/0256-307X/41/10/104201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Second Harmonic Generation in Nanowires
Bi-Jun Zhao1, Jian-Lin Zhao2, and Xue-Tao Gan1,2*
1Microelectronics and Nanoelectronics Department, School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
2Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article:   
Bi-Jun Zhao, Jian-Lin Zhao, and Xue-Tao Gan 2024 Chin. Phys. Lett. 41 104201
Download: PDF(10375KB)   PDF(mobile)(10417KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Second harmonic generation (SHG) in optical materials serves as important techniques for laser source generations in awkward spectral ranges, physical identities of materials in crystalline symmetry and interfacial configuration. Here, we present a comprehensive review on SHGs in nanowires (NWs), which have been recognized as an important element in constructing photonic and optoelectronic devices with compact footprint and high quantum yield. Relying on NW's one-dimensional geometry, its SHG could be employed as a sophisticated spectroscopy to determine the crystal phase and orientation, as well as the internal strain. The enhancements of SHG efficiency in NWs are discussed then, which were realized by hybrid integrating them with two-dimensional materials, nanophotonic and plasmonic structures. Finally, the potential applications of NW SHGs are concluded, including the areas of optical correlators and constructions of on-chip nano-laser sources.
Received: 12 July 2024      Review Published: 26 October 2024
PACS:  42.70.-a (Optical materials)  
  42.82.-m (Integrated optics)  
  85.60.-q (Optoelectronic devices)  
  85.60.Jb (Light-emitting devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/10/104201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I10/104201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bi-Jun Zhao
Jian-Lin Zhao
and Xue-Tao Gan
[1]Boyd R W 2008 Nonlinear Optics 3rd edn (Burlington: Academic) chap 1 p 1
[2] Franken P A, Hill A E, Peters C W, and Weinreich G 1961 Phys. Rev. Lett. 7 118
[3] Aghigh A, Bancelin S, Rivard M, Pinsard M, Ibrahim H, and Légaré F 2023 Biophys. Rev. 15 43
[4] Mostaço-Guidolin L, Rosin N, and Hackett T L 2017 Int. J. Mol. Sci. 18 1772
[5] Kaminskii A A, Bohatý L, Becker P, Eichler H J, and Rhee H 2008 Phys.-Usp. 51 899
[6] Pauzauskie P J and Yang P 2006 Mater. Today 9 36
[7] Quan L N, Kang J, Ning C Z, and Yang P 2019 Chem. Rev. 119 9153
[8] Zhang Y, Wu J, Jia L, Qu Y, Yang Y, Jia B, and Moss D J 2023 Laser & Photonics Rev. 17 2200512
[9] Foster M A, Turner A C, Lipson M, and Gaeta A L 2008 Opt. Express 16 1300
[10] Zhao B, Lockrey M N, Wang N, Caroff P, Yuan X, Li L, Wong-Leung J, Tan H H, and Jagadish C 2020 Nano Res. 13 2500
[11] Yuan X, Pan D, Zhou Y, Zhang X, Peng K, Zhao B, Deng M, He J, Tan H H, and Jagadish C 2021 Appl. Phys. Rev. 8 021302
[12] Wang N, Yuan X, Zhang X, Gao Q, Zhao B, Li L, Lockrey M, Tan H H, Jagadish C, and Caroff P 2019 ACS Nano 13 7261
[13] Zhao B, Lockrey M N, Caroff P, Wang N, Li L, Wong-Leung J, Tan H H, and Jagadish C 2018 Nanoscale 10 11205
[14] Zhang X, Yi R, Zhao B, Li C, Li L, Li Z, Zhang F, Wang N, Zhang M, Fang L, Zhao J, Chen P, Lu W, Fu L, Tan H H, Jagadish C, and Gan X 2023 ACS Nano 17 10918
[15] Yang P D 2024 Isr. J. Chem. 2024 e202300127
[16] Wang T, Sohoni M M, Wright L G, Stein M M, Ma S Y, Onodera T, Anderson M G, and McMahon P L 2023 Nat. Photonics 17 408
[17] Fuenzalida J, Giese E, and Gräfe M 2024 Adv. Quantum Technol. 7 2300353
[18] Pang Y, Ma S, Ji Q, Zhao X, Li Y, Qin Z, Liu Z, and Xu Y 2023 Photonics 10 296
[19] Urban B E, Neogi P, Senthilkumar K, Rajpurohit S K, Jagadeeshwaran P, Kim S, Fujita Y, and Neogi A 2012 IEEE J. Sel. Top. Quantum Electron. 18 1451
[20] Parodi V, Jacchetti E, Osellame R, Cerullo G, Polli D, and Raimondi M T 2020 Front. Bioeng. Biotechnol. 8 585363
[21] Zhang S, Liu L, Ren S, Li Z, Zhao Y, Yang Z, Hu R, and Qu J 2020 Opto-Electron. Adv. 3 200003
[22] Liu X, Bruch A W, and Tang H X 2023 Adv. Opt. Photonics 15 236
[23] Moody G, Chang L, Steiner T J, and Bowers J E 2020 AVS Quantum Sci. 2 041702
[24] Pelgrin V, Yoon H H, Cassan E, and Sun Z 2023 Light: Adv. Manuf. 4 311
[25] Xu L, Saerens G, Timofeeva M, Smirnova D A, Volkovskaya I, Lysevych M, Camacho-Morales R, Cai M, Zangeneh Kamali K, Huang L, Karouta F, Tan H H, Jagadish C, Miroshnichenko A E, Grange R, Neshev D N, and Rahmani M 2020 ACS Nano 14 1379
[26] Nie K Y, Luo S, Ren F F, Chen X, Gu S, Chen Z, Zhang R, and Ye J 2022 Photonics Res. 10 2337
[27] Gu L, Fang L, Yuan Q, Gan X, Yang H, Zhang X, Li J, Fang H, Khayrudinov V, Lipsanen H, Sun Z, and Zhao J 2020 Photonics Res. 8 1734
[28] Grinblat G 2021 ACS Photonics 8 3406
[29] Broussier A, Issa A, Le Cunff L O, Deturche R, Nguyen T H, Quyen D X, Xu T, Blaize S, Jradi S, Couteau C, and Bachelot R 2023 Micro Nano Eng. 19 100193
[30] Smirnova D and Kivshar Y S 2016 Optica 3 1241
[31] Qu Y, Wu J Y, Zhang Y N et al. 2023 Light: Adv. Manuf. 4 39
[32] Wei C, Yu Y R, Wang Z Y, Jiang L, Zeng Z M, Ye J, Zou X H, Pan W, Xie X J, and Yan L S 2023 arXiv:2305.07861 [physics.optics]
[33] Liu H, Pan B, Huang Y, He J, Zhang M, Yu Z, Liu L, Shi Y, and Dai D 2023 Light: Adv. Manuf. 4 133
[34] Khalilian M, Bi Z, Johansson J, Lenrick F, Hultin O, Colvin J, Timm R, Wallenberg R, Ohlsson J, Pistol M E, Gustafsson A, and Samuelson L 2020 Small 16 1907364
[35] Cisek R, Tokarz D, Hirmiz N, Saxena A, Shik A, Ruda H E, and Barzda V 2014 Nanotechnology 25 505703
[36] Grinblat G, Rahmani M, Cortés E, Caldarola M, Comedi D, Maier S A, and Bragas A V 2014 Nano Lett. 14 6660
[37] Liu C W, Chang S J, Hsiao C H, Huang R J, Lin Y S, Su M C, Wang P H, and Lo K Y 2014 IEEE Photonics Technol. Lett. 26 789
[38] Ren M L, Liu W, Aspetti C O, Sun L, and Agarwal R 2014 Nat. Commun. 5 5432
[39] Ben-Zvi R, Bar-Elli O, Oron D, and Joselevich E 2021 Nat. Commun. 12 3286
[40] Berdnikov Y, Shtrom I, Rozhavskaya M, Lundin W, Hendricks N, Grange R, and Timofeeva M 2021 Nanotechnology 32 40LT01
[41] Bolshakov A D, Shishkin I, Machnev A, Petrov M, Kirilenko D A, Fedorov V V, Mukhin I S, and Ginzburg P 2022 Nanoscale 14 993
[42] Ciret C, Alexander K, Poulvellarie N, Billet M, Mas Arabi C, Kuyken B, Gorza S P, and Leo F 2020 Opt. Express 28 31584
[43] Rocco D, Morales R C, Xu L, Zilli A, Vinel V, Finazzi M, Celebrano M, Leo G, Rahmani M, Jagadish C, Tan H, Neshev D, and De Angelis C 2022 Adv. Phys.: X 7 2022992
[44] Carletti L, de Ceglia D, Vincenti M A, and De Angelis C 2019 Opt. Express 27 32480
[45] Liu G, Guo K, Xie L, Zhang Z, and Lu L 2018 J. Alloys Compd. 746 653
[46] Sanatinia R, Anand S, and Swillo M 2015 Opt. Express 23 756
[47] Hjort M, Lehmann S, Knutsson J, Zakharov A A, Du Y A, Sakong S, Timm R, Nylund G, Lundgren E, Kratzer P, Dick K A, and Mikkelsen A 2014 ACS Nano 8 12346
[48] Ren M L, Agarwal R, Liu W, and Agarwal R 2015 Nano Lett. 15 7341
[49] Pimenta A C S, Teles Ferreira D C, Roa D B, Moreira M V B, de Oliveira A G, González J C, De Giorgi M, Sanvitto D, and Matinaga F M 2016 J. Phys. Chem. C 120 17046
[50] Timofeeva M, Bouravleuv A, Cirlin G, Shtrom I, Soshnikov I, Reig Escalé M, Sergeyev A, and Grange R 2016 Nano Lett. 16 6290
[51] Zhang B, Stehr J E, Chen P P, Wang X, Ishikawa F, Chen W M, and Buyanova I A 2021 Adv. Funct. Mater. 31 2104671
[52] Neeman L, Ben-Zvi R, Rechav K, Popovitz-Biro R, Oron D, and Joselevich E 2017 Nano Lett. 17 842
[53] Han X, Wang K, Long H, Hu H, Chen J, Wang B, and Lu P 2016 ACS Photonics 3 1308
[54] Cisek R, Barzda V, Ruda H E, and Shik A 2011 IEEE J. Sel. Top. Quantum Electron. 17 915
[55] Spencer T L, Cisek R, Barzda V, Philipose U, Ruda H E, and Shik A 2009 Appl. Phys. Lett. 94 233119
[56] Yu Y, Wang J, Wei Y M, Zhou Z K, Ni H Q, Niu Z C, Wang X H, and Yu S Y 2017 Nanotechnology 28 395701
[57] Hu H, Wang K, Long H, Liu W, Wang B, and Lu P 2015 Nano Lett. 15 3351
[58] Wei Y M, Yu Y, Wang J, Liu L, Ni H Q, Niu Z C, Li J T, Wang X H, and Yu S Y 2017 Nanoscale 9 16066
[59] He H, Zhang X, Yan X, Huang L, Gu C, Hu M L, Zhang X, Ren X M, and Wang C 2013 Appl. Phys. Lett. 103 143110
[60] Shen J, Chen H, He J, Li Y, Yang X, Zhu M, and Yuan X 2024 Appl. Phys. Lett. 124 121112
[61] Jun S W, Jeon S, Kwon J, Lee J, Kim C S, and Hong S W 2022 ACS Photonics 9 368
[62] Grange R, Brönstrup G, Kiometzis M, Sergeyev A, Richter J, Leiterer C, Fritzsche W, Gutsche C, Lysov A, Prost W, Tegude F J, Pertsch T, Tünnermann A, and Christiansen S 2012 Nano Lett. 12 5412
[63] Wang J, Yu Y, Wei Y M, Liu S F, Li J, Zhou Z K, Niu Z C, Yu S Y, and Wang X H 2017 Sci. Rep. 7 2166
[64] Camacho-Morales R, Bautista G, Zang X, Xu L, Turquet L, Miroshnichenko A, Tan H H, Lamprianidis A, Rahmani M, Jagadish C, Neshev D N, and Kauranen M 2019 Nanoscale 11 1745
[65] Chen R, Crankshaw S, Tran T, Chuang L C, Moewe M, and Chang-Hasnain C 2010 Appl. Phys. Lett. 96 051110
[66] Sautter J D, Xu L, Miroshnichenko A E, Lysevych M, Volkovskaya I, Smirnova D A, Camacho-Morales R, Zangeneh Kamali K, Karouta F, Vora K, Tan H H, Kauranen M, Staude I, Jagadish C, Neshev D N, and Rahmani M 2019 Nano Lett. 19 3905
[67] Long J P, Simpkins B S, Rowenhorst D J, and Pehrsson P E 2007 Nano Lett. 7 831
[68] Gan X, Li J, Xu M, Wang X, Liu Z, and Zhao J 2020 Adv. Opt. Mater. 8 2001273
[69] Park J S, Li C, Kim K H, Tang Y, Murphey C G E, Teitsworth T S, Kim S, Harutyunyan H, and Cahoon J F 2023 ACS Nano 17 11729
[70] Dutto F, Raillon C, Schenk K, and Radenovic A 2011 Nano Lett. 11 2517
[71] Wiecha P R, Arbouet A, Kallel H, Periwal P, Baron T, and Paillard V 2015 Phys. Rev. B 91 121416
[72] Wiecha P R, Arbouet A, Girard C, Baron T, and Paillard V 2016 Phys. Rev. B 93 125421
[73] Park D J, Kang P G, Jung J H, Lee H H, and Choi S B 2016 J. Korean Phys. Soc. 68 975
[74] Sergeyev A, Escalé M R, and Grange R 2017 J. Phys. D 50 044002
[75] Locharoenrat K, Sano H, and Mizutani G 2008 J. Lumin. 128 824
[76] Johnson J C, Yan H Q, Schaller R D, Petersen P B, Yang P D, and Saykally R J 2002 Nano Lett. 2 279
[77] Schaller R D, Johnson J C, and Saykally R J 2003 ChemPhysChem 4 1243
[78] Johnson J C, Knutsen K P, Yan H, Law M, Zhang Y, Yang P, and Saykally R J 2004 Nano Lett. 4 197
[79] Turquet L, Kakko J P, Zang X, Naskali L, Karvonen L, Jiang H, Huhtio T, Kauppinen E, Lipsanen H, Kauranen M, and Bautista G 2017 Laser & Photonics Rev. 11 1600175
[80] Sanatinia R, Swillo M, and Anand S 2012 Nano Lett. 12 820
[81] Fedorov V V, Bolshakov A, Sergaeva O, Neplokh V, Markina D, Bruyere S, Saerens G, Petrov M I, Grange R, Timofeeva M, Makarov S V, and Mukhin I S 2020 ACS Nano 14 10624
[82] Saerens G, Bloch E, Frizyuk K, Sergaeva O, Vogler-Neuling V V, Semenova E, Lebedkina E, Petrov M, Grange R, and Timofeeva M 2022 Nanoscale 14 8858
[83] Sanatinia R, Anand S, and Swillo M 2014 Nano Lett. 14 5376
[84] Bautista G, Mäkitalo J, Chen Y, Dhaka V, Grasso M, Karvonen L, Jiang H, Huttunen M J, Huhtio T, Lipsanen H, and Kauranen M 2015 Nano Lett. 15 1564
[85] Nakayama Y, Pauzauskie P J, Radenovic A, Onorato R M, Saykally R J, Liphardt J, and Yang P 2007 Nature 447 1098
[86] Nah S, Kuo Y H, Chen F, Park J, Sinclair R, and Lindenberg A M 2014 Nano Lett. 14 4322
[87] Wang F, Reece P J, Paiman S, Gao Q, Tan H H, and Jagadish C 2011 Nano Lett. 11 4149
[88] Liu X, Zhang Q, Chong W K, Yip J N, Wen X, Li Z, Wei F, Yu G, Xiong Q, and Sum T C 2015 ACS Nano 9 5018
[89] Rho Y, Yoo S, Durham D B, Kang D, Minor A M, and Grigoropoulos C P 2023 Nano Lett. 23 1843
[90] Kang S Y, Shin J, Jeong K Y, Lee C M, Yee K J, and Lee Y H 2012 Photonics. Nanostruct. Fundam. Appl. 10 534
[91] Li J, Zhu H, Chen Z, Huang Y, Zheng H, Tang Z, Gui X, Wang S, Tang Z, Ni P, and Genevet P 2019 Phys. Status Solidi B 256 1900075
[92] Yuan Q, Fang L, Yang H, Gan X, Khayrudinov V, Lipsanen H, Sun Z, and Zhao J 2018 Laser & Photonics Rev. 12 1800126
[93] Andral U, Walch P, Moreno V et al. 2022 Appl. Phys. B 128 177
[94] Shafi A M, Ahmed F, Fernandez H A, Uddin M G, Cui X, Das S, Dai Y, Khayrudinov V, Yoon H H, Du L, Sun Z, and Lipsanen H 2022 ACS Appl. Mater. & Interfaces 14 31140
[95] Shafi A M, Das S, Khayrudinov V, Ding E X, Uddin M G, Ahmed F, Sun Z, and Lipsanen H 2022 Chem. Mater. 34 9055
[96] Uddin M G, Das S, Shafi A M, Khayrudinov V, Ahmed F, Fernandez H, Du L, Lipsanen H, and Sun Z 2022 Adv. Sci. 9 2200082
[97] Sheetz K E and Squier J 2009 J. Appl. Phys. 105 051101
[98] Muraviev A V, Smolski V O, Loparo Z E, and Vodopyanov K L 2018 Nat. Photonics 12 209
[99] Yu H, Fang W, Wu X, Lin X, Tong L, Liu W, Wang A, and Shen Y R 2014 Nano Lett. 14 3487
[100] Shi Z, Zhang J, Yang L, Wu H, Yao N, Gong J, Fang W, Wang P, Guo X, and Tong L 2020 ACS Photonics 7 3264
[101] Zhang J, Shi Z, Yang L, Xin C, Li Y, Kang Y, Wang L, Gong J, Wang P, Tong L, and Guo X 2022 IEEE Photonics Technol. Lett. 34 207
[102] Xin C, Yu S, Bao Q, Wu X, Chen B, Wang Y, Xu Y, Yang Z, and Tong L 2016 Nano Lett. 16 4807
[103] Liao F, Wang Y, Peng T, Peng J, Gu Z, Yu H, Chen T, Yu J, and Gu F
Related articles from Frontiers Journals
[1] Xiao-Chuan Meng, Lu Li, Nai-Zhang Sun, Ze Xue, Qi Liu, Han Ye, and Wen-Jun Liu. Ultrafast Fiber Laser Based on Tungsten Sulphoselenide Materials[J]. Chin. Phys. Lett., 2023, 40(12): 104201
[2] Haoyu Wang, Yue-Jia Xiao, Qi Liu, Xiao-Wei Xing, Hu-Jiang Yang, and Wen-Jun Liu. Preparation of Bi$_{2}$Te$_{3}$ Based on Saturable Absorption System and Its Application in Fiber Lasers[J]. Chin. Phys. Lett., 2023, 40(11): 104201
[3] Yue-Jia Xiao, Xiao-Wei Xing, Wen-Wen Cui, Yue-Qian Chen, Qin Zhou, and Wen-Jun Liu. Femtosecond Fiber Laser Based on BiSbTeSe$_{2}$ Quaternary Material Saturable Absorber[J]. Chin. Phys. Lett., 2023, 40(5): 104201
[4] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 104201
[5] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 104201
[6] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 104201
[7] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 104201
[8] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 104201
[9] Xing-Yong Huang, Da-Qin Chen, Bi-Zhou Shen, Hai-Zhi Song. Preparation and 1.06μm Fluorescence Decay of Nd$^{3+}$-Doped Glass Ceramics Containing NaYF$_{4}$ Nanocrystallites[J]. Chin. Phys. Lett., 2019, 36(8): 104201
[10] Zong-Peng Song, Hai-Ou Zhu, Wen-Tao Shi, Da-Lin Sun, Shuang-Chen Ruan. Ultrafast charge transfer in dual graphene-WS$_{2}$ van der Waals quadrilayer heterostructures[J]. Chin. Phys. Lett., 2018, 35(12): 104201
[11] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 104201
[12] Sohail Abdul Jalil, Mahreen Akram, Gwanho Yoon, Ayesha Khalid, Dasol Lee, Niloufar Raeis-Hosseini, Sunae So, Inki Kim, Qazi Salman Ahmed, Junsuk Rho, Muhammad Qasim Mehmood. High Refractive Index Ti$_3$O$_5$ Films for Dielectric Metasurfaces[J]. Chin. Phys. Lett., 2017, 34(8): 104201
[13] A. R. Muhammad, M. T. Ahmad, R. Zakaria, H. R. A. Rahim, S. F. A. Z. Yusoff, K. S. Hamdan, H. H. M. Yusof, H. Arof, S. W. Harun.. Q-Switching Pulse Operation in 1.5-μm Region Using Copper Nanoparticles as Saturable Absorber[J]. Chin. Phys. Lett., 2017, 34(3): 104201
[14] N. A. A. Kadir, E. I. Ismail, A. A. Latiff, H. Ahmad, H. Arof, S. W. Harun. Transition Metal Dichalcogenides (WS$_{2}$ and MoS$_{2}$) Saturable Absorbers for Mode-Locked Erbium-Doped Fiber Lasers[J]. Chin. Phys. Lett., 2017, 34(1): 104201
[15] M. F. M. Rusdi, A. A. Latiff, E. Hanafi, M. B. H. Mahyuddin, H. Shamsudin, K. Dimyati, S. W. Harun. Molybdenum Disulphide Tape Saturable Absorber for Mode-Locked Double-Clad Ytterbium-Doped All-Fiber Laser Generation[J]. Chin. Phys. Lett., 2016, 33(11): 104201
Viewed
Full text


Abstract