Chin. Phys. Lett.  2024, Vol. 41 Issue (10): 102501    DOI: 10.1088/0256-307X/41/10/102501
NUCLEAR PHYSICS |
Finite Size Effect on Gluon Dissociation of $J/\psi$ in Relativistic Heavy Ion Collisions
Jingjing Wang, Baoyi Chen, and Yunpeng Liu*
Department of Applied Physics, Tianjin University, Tianjin 300350, China
Cite this article:   
Jingjing Wang, Baoyi Chen, and Yunpeng Liu 2024 Chin. Phys. Lett. 41 102501
Download: PDF(611KB)   PDF(mobile)(639KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thermal quantities, including the entropy density and gluon spectrum, of quark matter within a box that is finite in the longitudinal direction are calculated using a bag model. Under the assumption of entropy conservation, the corresponding gluon dissociation rate of $J/\psi$ is studied. It reaches a maximum at a certain longitudinal size $L_{\rm m}$, below which the suppression is weak even if the temperature becomes higher than that without the finite size effect, and above which the dissociation rate approaches to the thermodynamic limit gradually with increasing longitudinal size of the fireball.
Received: 08 May 2024      Published: 18 October 2024
PACS:  25.75.Nq (Quark deconfinement, quark-gluon plasma production, and phase transitions)  
  12.38.Mh (Quark-gluon plasma)  
  25.75.-q (Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/10/102501       OR      https://cpl.iphy.ac.cn/Y2024/V41/I10/102501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jingjing Wang
Baoyi Chen
and Yunpeng Liu
[1]Hagedorn R 1965 Nuovo Cimento Suppl. 3 147
[2] Karsch F, Laermann E, and Peikert A 2001 Nucl. Phys. B 605 579
[3] Ding H T, Karsch F, and Mukherjee S 2015 Int. J. Mod. Phys. E 24 1530007
[4] Pisarski R D and Wilczek F 1984 Phys. Rev. D 29 338
[5] Fukushima K and Hatsuda T 2011 Rep. Prog. Phys. 74 014001
[6] Stephanov M, Rajagopal K, and Shuryak E 1998 Phys. Rev. Lett. 81 4816
[7] Kharzeev D and Zhitnitsky A 2007 Nucl. Phys. A 797 67
[8] Gonin M, Abreu M C, Alexa C et al. 1996 Nucl. Phys. A 610 404
[9] Luo X F and Xu N 2017 Nucl. Sci. Tech. 28 112
[10] Adcox K, Adler S S, Ajitanand N N et al. 2002 Phys. Rev. Lett. 88 022301
[11] Adare A, Afanasiev S, Aidala C et al. 2007 Phys. Rev. Lett. 98 162301
[12] Chatrchyan S et al. 2011 Phys. Rev. C 84 024906
[13] Matsui T and Satz H 1986 Phys. Lett. B 178 416
[14]Andronic A, Braun-Munzinger P, and Stachel J 2009 Acta Phys. Pol. B 40 1005
[15] Karsch F, Kharzeev D, and Satz H 2006 Phys. Lett. B 637 75
[16] Xu X M, Kharzeev D, Satz H, and Wang X N 1996 Phys. Rev. C 53 3051
[17] Brambilla N, Pineda A, Soto J, and Vairo A 2000 Nucl. Phys. B 566 275
[18] Escobedo M A, Giannuzzi F, Mannarelli M, and Soto J 2013 Phys. Rev. D 87 114005
[19] Mishra A, Jahan CS A, Kesarwani S, Raval H, Kumar S, and Meena J 2019 Eur. Phys. J. A 55 99
[20] Peskin M E 1979 Nucl. Phys. B 156 365
[21] Grandchamp L and Rapp R 2001 Phys. Lett. B 523 60
[22] Zhu X L, Zhuang P F, and Xu N 2005 Phys. Lett. B 607 107
[23] Thews R L, Schroedter M, and Rafelski J 2001 Phys. Rev. C 63 054905
[24] Yan L, Zhuang P F, and Xu N 2006 Phys. Rev. Lett. 97 232301
[25] Chen S L and He M 2018 Phys. Lett. B 786 260
[26] Wong C Y 1996 Nucl. Phys. A 610 434
[27] Lansberg J P 2006 Int. J. Mod. Phys. A 21 3857
[28] Schroedter M, Thews R L, and Rafelski J 2000 Phys. Rev. C 62 024905
[29] Liu Y P, Greiner C, and Kostyuk A 2013 Phys. Rev. C 87 014910
[30] Irfan S, Akram F, Masud B, and Shafaq B 2019 Phys. Rev. C 100 064906
[31] Tumasyan A et al. 2022 Phys. Rev. Lett. 128 252301
[32] Zhao J X and Zhuang P F 2022 arXiv:2209.13475 [hep-ph]
[33] Wu B G, Tang Z D, He M, and Rapp R 2024 Phys. Rev. C 109 014906
[34] Xu M M and Wu Y F 2023 Symmetry 15 510
[35] Deb P, Ghosh S, Prakash J, Das S K, and Varma R 2022 Chin. Phys. C 46 044102
[36] Yamamoto N and Kanazawa T 2009 Phys. Rev. Lett. 103 032001
[37] Pal S, Motornenko A, Vovchenko V, Bhattacharyya A, Steinheimer J, and Stoecker H 2024 Phys. Rev. D 109 014009
[38] Guo J H, Dai W S, Xie M, and Liu Y P 2019 Phys. Rev. C 99 054901
[39] Cheng P, Luo X F, Ping J L, and Zong H S 2019 Phys. Rev. D 100 014027
[40] Han Z H, Chen B Y, and Liu Y P 2020 Chin. Phys. Lett. 37 112501
[41] Polleri A, Renk T, Schneider R, and Weise W 2004 Phys. Rev. C 70 044906
[42] Brezinski F and Wolschin G 2012 Phys. Lett. B 707 534
[43] Brambilla N, Escobedo M Á, Ghiglieri J, and Vairo A 2011 J. High Energy Phys. 2011(12) 116
Related articles from Frontiers Journals
[1] Zonghou Han , Baoyi Chen , and Yunpeng Liu. Critical Temperature of Deconfinement in a Constrained Space Using a Bag Model at Vanishing Baryon Density[J]. Chin. Phys. Lett., 2020, 37(11): 102501
[2] Zhen-Yu Xu, Jian-Li Liu, Pan-Pan Zhang, Jing-Bo Zhang, Lei Huo. Elliptic Flow Splitting between Particles and their Antiparticles in Au+Au Collisions from a Multiphase Transport Model[J]. Chin. Phys. Lett., 2017, 34(6): 102501
[3] Shi-Jun Mao. Deconfinement Phase Transition with External Magnetic Field in the Friedberg–Lee Model[J]. Chin. Phys. Lett., 2016, 33(11): 102501
[4] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 102501
[5] XU Shu-Sheng, SHI Yuan-Mei, YANG You-Chang, CUI Zhu-Fang, ZONG Hong-Shi. Discussion of Various Susceptibilities within Thermal and Dense Quantum Chromodynamics[J]. Chin. Phys. Lett., 2015, 32(12): 102501
[6] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 102501
[7] JIANG Yu, HOU Feng-Yao, LUO Cui-Bai, ZONG Hong-Shi. Quark Number Susceptibility around the Chiral Critical End Point[J]. Chin. Phys. Lett., 2015, 32(02): 102501
[8] DING Jing-Zhi, JIN Hong-Ying. Quark and Gluon Condensates at Finite Temperatures by the Linear Sigma Model Approach[J]. Chin. Phys. Lett., 2014, 31(08): 102501
[9] REN Chun-Fu, ZHANG Xiao-Bing, ZHANG Yi. Magnetic Effects in Color-Flavor Locked Superconducting Phase with the Additional Chiral Condensates[J]. Chin. Phys. Lett., 2014, 31(06): 102501
[10] JIANG Yu,GONG Hao,SUN Wei-Min,ZONG Hong-Shi,**. Wigner Solution to the Quark Gap Equation in the Nonzero Current Quark Mass[J]. Chin. Phys. Lett., 2012, 29(4): 102501
[11] QU Zhen, LIU Yun-Peng, ZHUANG Peng-Fei. Dissociation Temperature of Strictly Confined Charmonium States[J]. Chin. Phys. Lett., 2012, 29(3): 102501
[12] FU Yong-Ping, LI Yun-De . Intermediate Mass Dileptons from the Passage of Jets and High Energy Photons through Quark-Gluon Plasma[J]. Chin. Phys. Lett., 2010, 27(10): 102501
[13] XIANG Wen-Chang, WANG Sheng-Qin, ZHOU Dai-Cui. Hadron Multiplicities in Pb+Pb Collisions at the Large Hadron Collider and Pomeron Loop Effects[J]. Chin. Phys. Lett., 2010, 27(7): 102501
[14] YU Li-Li, M. J. Efaaf, ZHANG Wei-Ning,. Interferometry Signatures for QCD First-Order Phase Transition in High Energy Heavy Ion Collisions[J]. Chin. Phys. Lett., 2010, 27(2): 102501
[15] FU Yong-Ping, LI Yun-De. Jet-Photon Production at RHIC and LHC[J]. Chin. Phys. Lett., 2009, 26(11): 102501
Viewed
Full text


Abstract