CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Influence of Local Cation Order on Electronic Structure and Optical Properties of Cation-Disordered Semiconductor AgBiS$_2$ |
Xiaoyu Wang1†, Muhammad Faizan2†, Yuhao Fu1*, Kun Zhou2, Yilin Zhang2, Xin He2, David J. Singh3*, and Lijun Zhang2* |
1State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China 2State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China 3Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211-7010, USA
|
|
Cite this article: |
Xiaoyu Wang, Muhammad Faizan, Yuhao Fu et al 2024 Chin. Phys. Lett. 41 106101 |
|
|
Abstract Site disorder exists in some practical semiconductors and can significantly impact their intrinsic properties both beneficially and detrimentally. However, the uncertain local order and structure pose a challenge for experimental and theoretical research. Especially, it hinders the investigation of the effects of the diverse local atomic environments resulting from the site disorder. We employ the special quasi-random structure method to perform first-principles research on connection between local site disorder and electronic/optical properties, using cation-disordered AgBiS$_2$ (rock salt phase) as an example. We predict that cation-disordered AgBiS$_2$ has a bandgap ranging from 0.6 to 0.8 eV without spin-orbit coupling and that spin-orbit coupling reduces this by approximately 0.3 eV. We observe the effects of local structural features in the disordered lattice, such as the one-dimensional chain-like aggregation of cations that results in formation of doping energy bands near the band edges, formation and broadening of band-tail states, and the disturbance in the local electrostatic potential, which significantly reduces the bandgap and stability. The influence of these ordered features on the optical properties is confined to alterations in the bandgap and does not markedly affect the joint density of states or optical absorption. Our study provides a research roadmap for exploring the electronic structure of site-disordered semiconductor materials, suggests that the ordered chain-like aggregation of cations is an effective way to regulate the bandgap of AgBiS$_2$, and provides insight into how variations in local order associated with processing can affect properties.
|
|
Received: 25 July 2024
Editors' Suggestion
Published: 11 October 2024
|
|
|
|
|
|
[1] | Wang Y, Kavanagh S R, Burgués-Ceballos I, Walsh A, Scanlon D O, and Konstantatos G 2022 Nat. Photonics 16 235 |
[2] | Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, and Zhang L 2017 J. Am. Chem. Soc. 139 2630 |
[3] | Wang X, Yang J, Wang X, Faizan M, Zou H, Zhou K, Xing B, Fu Y, and Zhang L 2022 J. Phys. Chem. Lett. 13 5017 |
[4] | Li W, Li X, Liao J, Zhao B, Zhang L, Huang L, Liu G, Guo Z, and Liu M 2019 Energy & Environ. Sci. 12 2286 |
[5] | Martinez A D, Fioretti A N, Toberer E S, and Tamboli A C 2017 J. Mater. Chem. A 5 11418 |
[6] | Radha R, Ravi Kumar Y, Sakar M, Rohith Vinod K, and Balakumar S 2018 Appl. Catal. B: Environ. 225 386 |
[7] | Toberer E S, Zevalkink A, and Jeffrey Snyder G 2011 J. Mater. Chem. 21 15843 |
[8] | Melamed C L, Tellekamp M B, Mangum J S, Perkins J D, Dippo P, Toberer E S, and Tamboli A C 2019 Phys. Rev. Mater. 3 051602 |
[9] | Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, and Silberberg Y 2009 Phys. Rev. Lett. 103 013901 |
[10] | Christian T M, Beaton D A, Mukherjee K, Alberi K, Fitzgerald E A, and Mascarenhas A 2013 J. Appl. Phys. 114 074505 |
[11] | Barrigón E, Barrutia L, Ochoa M, Rey-Stolle I, and Algora C 2016 Prog. Photovoltaics 24 1116 |
[12] | Mondal A, Pal S, Masanta S, Pal S, Saha R, Kumar P, Singha A, Chattopadhyay S, Jana D, and Sarkar A 2021 Mater. Sci. Semicond. Process. 135 106068 |
[13] | Zheng J, Xiao J, Yu X, Kovarik L, Gu M, Omenya F, Chen X, Yang X Q, Liu J, Graff G L, Whittingham M S, and Zhang J G 2012 Phys. Chem. Chem. Phys. 14 13515 |
[14] | Böcher F, Culver S P, Peilstöcker J, Weldert K S, and Zeier W G 2017 Dalton Trans. 46 3906 |
[15] | Baranowski L L, Zawadzki P, Lany S, Toberer E S, and Zakutayev A 2016 Semicond. Sci. Technol. 31 123004 |
[16] | Fetzer C M, Lee R T, Stringfellow G B, Liu X Q, Sasaki A, and Ohno N 2002 J. Appl. Phys. 91 199 |
[17] | Ye K, Siah S C, Erslev P T, Akey A, Settens C, Hoque M S B, Braun J, Hopkins P, Teeter G, Buonassisi T, and Jaramillo R 2019 Chem. Mater. 31 8402 |
[18] | Yang J, Zhang P, and Wei S H 2018 J. Phys. Chem. Lett. 9 31 |
[19] | King R R, Law D C, Edmondson K M, Fetzer C M, Kinsey G S, Yoon H, Sherif R A, and Karam N H 2007 Appl. Phys. Lett. 90 183516 |
[20] | Wei S H and Zunger A 1990 Appl. Phys. Lett. 56 662 |
[21] | Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, and Rosei F 2015 Nat. Photonics 9 61 |
[22] | Mendis B G, Shannon M D, Goodman M C, Major J D, Claridge R, Halliday D P, and Durose K 2014 Prog. Photovoltaics 22 24 |
[23] | Schnepf R R, Cordell J J, Tellekamp M B, Melamed C L, Greenaway A L, Mis A, Brennecka G L, Christensen S, Tucker G J, Toberer E S, Lany S, and Tamboli A C 2020 ACS Energy Lett. 5 2027 |
[24] | Moran R F, McKay D, Tornstrom P C, Aziz A, Fernandes A, Grau-Crespo R, and Ashbrook S E 2019 J. Am. Chem. Soc. 141 17838 |
[25] | Viñes F, Konstantatos G, and Illas F 2017 Phys. Chem. Chem. Phys. 19 27940 |
[26] | Akhil S and Balakrishna R G 2022 J. Mater. Chem. A 10 8615 |
[27] | Bernechea M, Cates N, Xercavins G, So D, Stavrinadis A, and Konstantatos G 2016 Nat. Photonics 10 521 |
[28] | Pejova B, Grozdanov I, Nesheva D, and Petrova A 2008 Chem. Mater. 20 2551 |
[29] | Pejova B, Nesheva D, Aneva Z, and Petrova A 2011 J. Phys. Chem. C 115 37 |
[30] | Guin S N and Biswas K 2013 Chem. Mater. 25 3225 |
[31] | Rathore E, Juneja R, Culver S P, Minafra N, Singh A K, Zeier W G, and Biswas K 2019 Chem. Mater. 31 2106 |
[32] | Huang P C, Yang W C, and Lee M W 2013 J. Phys. Chem. C 117 18308 |
[33] | Zhou S, Yang J, Li W, Jiang Q, Luo Y, Zhang D, Zhou Z, and Li X 2016 J. Electrochem. Soc. 163 D63 |
[34] | Hu L, Patterson R J, Zhang Z, Hu Y, Li D, Chen Z, Yuan L, Teh Z L, Gao Y, Conibeer G J, and Huang S 2018 J. Mater. Chem. C 6 731 |
[35] | Wu Y, Wan L, Zhang W, Li X, and Fang J 2019 CrystEngComm 21 3137 |
[36] | Oh J T, Bae S Y, Ha S R, Cho H, Lim S J, Boukhvalov D W, Kim Y, and Choi H 2019 Nanoscale 11 9633 |
[37] | Calva-Yáñez J C, Pérez-Valdovinos O, Reynoso-Soto E A, Alvarado-Tenorio G, Jaramillo-Quintero O A, and Rincón M 2019 J. Phys. D 52 125502 |
[38] | Ming S, Liu X, Zhang W, Xie Q, Wu Y, Chen L, and Wang H Q 2020 J. Cleaner Prod. 246 118966 |
[39] | Öberg V A, Johansson M B, Zhang X, and Johansson E M J 2020 ACS Appl. Nano Mater. 3 4014 |
[40] | Burgués-Ceballos I, Wang Y, Akgul M Z, and Konstantatos G 2020 Nano Energy 75 104961 |
[41] | Xiao Y, Wang H, Awai F, Shibayama N, Kubo T, and Segawa H 2021 ACS Appl. Mater. & Interfaces 13 3969 |
[42] | Oh J T, Bae S Y, Yang J, Ha S R, Song H, Lee C B, Shome S, Biswas S, Lee H M, Seo Y H, Na S I, Park J S, Yi W, Lee S, Bertens K, Lee B R, Sargent E H, Kim H, Kim Y, and Choi H 2021 J. Power Sources 514 230585 |
[43] | Chen D, Shivarudraiah S B, Geng P, Ng M, Li C H A, Tewari N, Zou X, Wong K S, Guo L, and Halpert J E 2022 ACS Appl. Mater. & Interfaces 14 1634 |
[44] | Pai N, Lu J, Senevirathna D C, Chesman A S R, Gengenbach T, Chatti M, Bach U, Andrews P C, Spiccia L, Cheng Y B, and Simonov A N 2018 J. Mater. Chem. C 6 2483 |
[45] | Chen C, Qiu X, Ji S, Jia C, and Ye C 2013 CrystEngComm 15 7644 |
[46] | Sugarthi S, Bakiyaraj G, Abinaya R, Navaneethan M, Archana J, and Shimomura M 2020 Mater. Sci. Semicond. Process. 107 104781 |
[47] | Viñes F, Bernechea M, Konstantatos G, and Illas F 2016 Phys. Rev. B 94 235203 |
[48] | Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 |
[49] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[50] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[51] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[52] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[53] | Heyd J, Scuseria G E, and Ernzerhof M 2003 J. Chem. Phys. 118 8207 |
[54] | Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, and Ángyán J G 2006 J. Chem. Phys. 124 154709 |
[55] | Wei S H, Ferreira L G, Bernard J E, and Zunger A 1990 Phys. Rev. B 42 9622 |
[56] | van de Walle A, Tiwary P, de Jong M, Olmsted D L, Asta M, Dick A, Shin D, Wang Y, Chen L Q, and Liu Z K 2013 Calphad 42 13 |
[57] | Dronskowski R and Bloechl P E 1993 J. Phys. Chem. 97 8617 |
[58] | Maintz S, Deringer V L, Tchougréeff A L, and Dronskowski R 2016 J. Comput. Chem. 37 1030 |
[59] | Zhao X G, Zhou K, Xing B, Zhao R, Luo S, Li T, Sun Y, Na G, Xie J, Yang X, Wang X, Wang X, He X, Lv J, Fu Y, and Zhang L 2021 Sci. Bull. 66 1973 |
[60] | Luo S, Xing B, Faizan M, Xie J, Zhou K, Zhao R, Li T, Wang X, Fu Y, He X, Lv J, and Zhang L 2022 J. Phys. Chem. A 126 4300 |
[61] | Li L, Wang Y, Wang X, Lin R, Luo X, Liu Z, Zhou K, Xiong S, Bao Q, Chen G, Tian Y, Deng Y, Xiao K, Wu J, Saidaminov M I, Lin H, Ma C Q, Zhao Z, Wu Y, Zhang L, and Tan H 2022 Nat. Energy 7 708 |
[62] | Cheng L, Yi C, Tong Y, Zhu L, Kusch G, Wang X, Wang X, Jiang T, Zhang H, Zhang J, Xue C, Chen H, Xu W, Liu D, Oliver R A, Friend R H, Zhang L, Wang N, Huang W, and Wang J 2020 Research 2020 9017871 |
[63] | Wang X, Chen Y, Zhang T, Wang X, Wang Y, Kan M, Miao Y, Chen H, Liu X, Wang X, Shi J, Zhang L, and Zhao Y 2021 ACS Energy Lett. 6 2735 |
[64] | Geller S and Wernick J H 1959 Acta Crystallogr. 12 46 |
[65] | Shannon R D 1976 Acta Crystallogr. Sect. A 32 751 |
[66] | Ju M G, Dai J, Ma L, Zhou Y, and Zeng X C 2020 Nanoscale Adv. 2 770 |
[67] | Li T, Luo S, Wang X, and Zhang L 2021 Adv. Mater. 33 2008574 |
[68] | Huang J and Kang J 2024 Phys. Rev. Mater. 8 074604 |
[69] | Hoffmann R 1988 Solids and Surfaces: A Chemist's View of Bonding in Extended Structures (New York: VCH Publishers) |
[70] | Popescu V and Zunger A 2012 Phys. Rev. B 85 085201 |
[71] | Duong T, Mulmudi H K, Wu Y, Fu X, Shen H, Peng J, Wu N, Nguyen H T, Macdonald D, Lockrey M, White T P, Weber K, and Catchpole K 2017 ACS Appl. Mater. & Interfaces 9 26859 |
[72] | Liu L, Bai Y, Zhang X, Shang Y, Wang C, Wang H, Zhu C, Hu C, Wu J, Zhou H, Li Y, Yang S, Ning Z, and Chen Q 2020 Angew. Chem. Int. Ed. 59 5979 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|