Chin. Phys. Lett.  2024, Vol. 41 Issue (1): 013201    DOI: 10.1088/0256-307X/41/1/013201
ATOMIC AND MOLECULAR PHYSICS |
Twin-Capture Rydberg State Excitation Enhanced with Few-Cycle Laser Pulses
Jing Zhao1, Jinlei Liu1, Xiaowei Wang1, and Zengxiu Zhao1,2*
1Department of Physics, National University of Defense Technology, Changsha 410073, China
2Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
Cite this article:   
Jing Zhao, Jinlei Liu, Xiaowei Wang et al  2024 Chin. Phys. Lett. 41 013201
Download: PDF(2827KB)   PDF(mobile)(2830KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum excitation is usually regarded as a transient process occurring instantaneously, leaving the underlying physics shrouded in mystery. Recent research shows that Rydberg-state excitation with ultrashort laser pulses can be investigated and manipulated with state-of-the-art few-cycle pulses. We theoretically find that the efficiency of Rydberg state excitation can be enhanced with a short laser pulse and modulated by varying the laser intensities. We also uncover new facets of the excitation dynamics, including the launching of an electron wave packet through strong-field ionization, the re-entry of the electron into the atomic potential and the crucial step where the electron makes a U-turn, resulting in twin captures into Rydberg orbitals. By tuning the laser intensity, we show that the excitation of the Rydberg state can be coherently controlled on a sub-optical-cycle timescale. Our work paves the way toward ultrafast control and coherent manipulation of Rydberg states, thus benefiting Rydberg-state-based quantum technology.
Received: 23 October 2023      Editors' Suggestion Published: 02 January 2024
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/1/013201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I1/013201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing Zhao
Jinlei Liu
Xiaowei Wang
and Zengxiu Zhao
[1] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, and Jia S T 2020 Nat. Phys. 16 911
[2] Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M, and Gleyzes S 2016 Nature 535 262
[3] Luo L, Men L, Liu Z, Mudryk Y, Zhao X, Yao Y, Park J M, Shinar R, Shinar J, Ho K M, Perakis I E, Vela J, and Wang J 2017 Nat. Commun. 8 15565
[4] Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vuletić V, and Lukin M D 2021 Nature 595 227
[5] Vassen W, Cohen-Tannoudji C, Leduc M, Boiron D, Westbrook C I, Truscott A, Baldwin K, Birkl G, Cancio P, and Trippenbach M 2012 Rev. Mod. Phys. 84 175
[6] Zimmermann H, Buller J, Eilzer S, and Eichmann U 2015 Phys. Rev. Lett. 114 123003
[7] Grochmalicki J and Lewenstein M 1988 J. Phys. B 21 3285
[8] Keldysh L V 1965 Sov. Phys. Usp. 8 496
[9] Zhang D W, Lü Z H, Meng C, Du X Y, Zhou Z Y, Zhao Z X, and Yuan J M 2012 Phys. Rev. Lett. 109 243002
[10] Zhao J, Liu J L, Wang X W, Yuan J M, and Zhao Z X 2022 Chin. Phys. Lett. 39 123201
[11] Chini M, Wang X, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Heslar J, Telnov D A, Chu S I, and Chang Z 2014 Nat. Photonics 8 437
[12] Xiong W H, Geng J W, Tang J Y, Peng L Y, and Gong Q 2014 Phys. Rev. Lett. 112 233001
[13] Beaulieu S, Camp S, Descamps D, Comby A, Wanie V, Petit S, Legare F, Schafer K J, Gaarde M B, Catoire F, and Mairesse Y 2016 Phys. Rev. Lett. 117 203001
[14] Yun H, Mun J H, Hwang S I, Park S B, Ivanov I A, Nam C H, and Kim K T 2018 Nat. Photonics 12 620
[15] Tao W K, Wang L, Song P, Xiao F, Wang J C, Zheng Z G, Zhao J, Wang X W, and Zhao Z X 2023 Chin. Phys. Lett. 40 063201
[16] Chetty D, Glover R D, Tong X M, deHarak B A, Xu H, Haram N, Bartschat K, Palmer A J, Luiten A N, Light P S, Litvinyuk I V, and Sang R T 2022 Phys. Rev. Lett. 128 173201
[17] Matthews M, Morales F, Patas A, Lindinger A, Gateau J, Berti N, Hermelin S, Kasparian J, Richter M, Bredtmann T, Smirnova O, Wolf J P, and Ivanov M 2018 Nat. Phys. 14 695
[18] Ivanov I A, Kheifets A S, and Kim K T 2022 Sci. Rep. 12 17048
[19] Li Q G, Tong X M, Morishita T, Wei H, and Lin C D 2014 Phys. Rev. A 89 023421
[20] Li Q G, Tong X M, Morishita T, Jin C, Wei H, and Lin C D 2014 J. Phys. B 47 204019
[21] Zimmermann H, Patchkovskii S, Ivanov M, and Eichmann U 2017 Phys. Rev. Lett. 118 013003
[22] Chetty D, Glover R D, deHarak B A, Tong X M, Xu H, Pauly T, Smith N, Hamilton K R, Bartschat K, Ziegel J P, Douguet N, Luiten A N, Light P S, Litvinyuk I V, and Sang R T 2020 Phys. Rev. A 101 053402
[23] Nubbemeyer T, Gorling K, Saenz A, Eichmann U, and Sandner W 2008 Phys. Rev. Lett. 101 233001
[24] Liu M Q, Xu S P, Hu S L, Becker W, Quan W, Liu X J, and Chen J 2021 Optica 8 765
[25] Hu S L, Hao X L, Lv H, Liu M Q, Yang T X, Xu H F, Jin M X, Ding D J, Li Q G, Li W D, Becker W, and Chen J 2019 Opt. Express 27 31629
[26] Piraux B, Mota-Furtado F, O'Mahony P F, Galstyan A, and Popov Y V 2017 Phys. Rev. A 96 043403
[27] Zhang B, Chen W, and Zhao Z 2014 Phys. Rev. A 90 023409
[28] Xu S P, Liu M Q, Hu S L, Shu Z, Quan W, Xiao Z L, Zhou Y, Wei M Z, Zhao M, Sun R P, Wang Y, Hua L, Gong C, Lai X, Chen J, and Liu X 2020 Phys. Rev. A 102 043104
[29] Ammosov M V, Delone N B, and Krainov V P 1986 Sov. Phys.-JETP 64 1191
[30] Arbó D G, Ishikawa K L, Schiessl K, Persson E, and Burgdörfer J 2010 Phys. Rev. A 82 043426
[31] Meckel M, Staudte A, Patchkovskii S, Villeneuve D M, Corkum P B, Dorner R, and Spanner M 2014 Nat. Phys. 10 594
[32] Bian X B and Bandrauk A D 2012 Phys. Rev. Lett. 108 263003
Related articles from Frontiers Journals
[1] Yang-Ni Liu, Song-Po Xu, Mu-Feng Zhu, Zheng-Rong Xiao, Shao-Gang Yu, Lin-Qiang Hua, Xuan-Yang Lai, Wei Quan, Wen-Xing Yang, and Xiao-Jun Liu. Wavelength Dependence of Atomic Excitation for Ar Subject to Intense Midinfrared Laser Pulses[J]. Chin. Phys. Lett., 2023, 40(10): 013201
[2] Jing Zhao, Jinlei Liu, Xiaowei Wang, Jianmin Yuan, and Zengxiu Zhao. Real-Time Observation of Electron-Hole Coherence Induced by Strong-Field Ionization[J]. Chin. Phys. Lett., 2022, 39(12): 013201
[3] Yingbin Li, Lingling Qin, Aihua Liu, Ke Zhang, Qingbin Tang, Chunyang Zhai, Jingkun Xu, Shi Chen, Benhai Yu, and Jing Chen. Manipulating Nonsequential Double Ionization of Argon Atoms via Orthogonal Two-Color Field[J]. Chin. Phys. Lett., 2022, 39(9): 013201
[4] Zhi-Lei Xiao, Wei Quan, Song-Po Xu, Shao-Gang Yu, Xuan-Yang Lai, Jing Chen, Xiao-Jun Liu. Nonadiabatic and Multielectron Effects in the Attoclock Experimental Scheme[J]. Chin. Phys. Lett., 2020, 37(4): 013201
[5] Long Xu, Li-Bin Fu. Understanding Tunneling Ionization of Atoms in Laser Fields using the Principle of Multiphoton Absorption[J]. Chin. Phys. Lett., 2019, 36(4): 013201
[6] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 013201
[7] Bin Zhang, Jian Zhao, Zeng-Xiu Zhao. Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules[J]. Chin. Phys. Lett., 2018, 35(4): 013201
[8] Jian-Hong Chen, Song-Feng Zhao, Guo-Li Wang, Xiao-Ping Zheng, Zheng-Rong Zhang. Angle-Resolved Electron Spectra of F$^{-}$ Ions by Few-Cycle Laser Pulses[J]. Chin. Phys. Lett., 2017, 34(6): 013201
[9] M. Salehi, S. Mirzanejad. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma[J]. Chin. Phys. Lett., 2017, 34(5): 013201
[10] Jian-Xing Hao, Xiao-Lei Hao, Wei-Dong Li, Shi-Lin Hu, Jing Chen. Controlling Three-Dimensional Electron–Electron Correlation via Elliptically Polarized Intense Laser Field[J]. Chin. Phys. Lett., 2017, 34(4): 013201
[11] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 013201
[12] Hong-Dan Zhang, Jing Guo, Yan Shi, Hui Du, Hai-Feng Liu, Xu-Ri Huang, Xue-Shen Liu, Jun Jing. Exploration of High-Harmonic Generation from the CS$_2$ Molecule by the Lewenstein Method in Two-Color Circularly Polarized Laser Field[J]. Chin. Phys. Lett., 2017, 34(1): 013201
[13] Xin-Hai Tu, Xiao-Lei Hao, Wei-Dong Li, Shi-Lin Hu, Jing Chen. Nonadiabatic Effect on the Rescattering Trajectories of Electrons in Strong Laser Field Ionization Process[J]. Chin. Phys. Lett., 2016, 33(09): 013201
[14] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 013201
[15] XIA Chang-Long, MIAO Xiang-Yang. Generation of Linear Isolated Sub-60 Attosecond Pulses by Combining a Circularly Polarized Pulse with an Elliptically Polarized Pulse[J]. Chin. Phys. Lett., 2015, 32(4): 013201
Viewed
Full text


Abstract