Chin. Phys. Lett.  2024, Vol. 41 Issue (1): 014201    DOI: 10.1088/0256-307X/41/1/014201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Real-Time Observation of Instantaneous ac Stark Shift of a Vacuum Using a Zeptosecond Laser Pulse
Dandan Su1 and Miao Jiang2,3*
1Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
2School of Science, China University of Mining and Technology, Beijing 100083, China
3State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China
Cite this article:   
Dandan Su and Miao Jiang 2024 Chin. Phys. Lett. 41 014201
Download: PDF(2086KB)   PDF(mobile)(2112KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the numerical solution of the time-dependent Dirac equation, we propose a method to observe in real time the ac Stark shift of a vacuum driven by an ultra-intense laser field. By overlapping the ultra-intense pump pulse with another zeptosecond probe pulse whose photon energy is smaller than $2mc^2$, electron–positron pair creation can be controlled by tuning the time delay between the pump and probe pulses. Since the pair creation rate depends sensitively on the instantaneous vacuum potential, one can reconstruct the ac Stark shift of the vacuum potential according to the time-delay-dependent pair creation rate.
Received: 04 September 2023      Published: 16 January 2024
PACS:  03.65.-w (Quantum mechanics)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  03.65.Pm (Relativistic wave equations)  
  12.20.Ds (Specific calculations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/1/014201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I1/014201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dandan Su and Miao Jiang
[1]Peskin M 2018 An Introduction To Quantum Field Theory (New York: CRC Press)
[2] Hoi I C, Kockum A F, Tornberg L, Pourkabirian A, Johansson G, Delsing P, and Wilson C 2015 Nat. Phys. 11 1045
[3]Casimir H B G 1948 Indag. Math. 10 261
[4] Greiner W and Reinhardt J 2009 Quantum Electrodynamics (Berlin: Springer)
[5] He F, Ruiz C, Becker A, Thumm U, and Atomic J O P B 2011 J. Phys. B 44 211001
[6] Fillion-Gourdeau F M C, Lorin E, and Bandrauk A D 2013 Phys. Rev. Lett. 110 013002
[7] Heisenberg W and Euler H 1936 Z. Phys. 98 714
[8] Sauter F 1931 Z. Phys. 69 742
[9] Schwinger J 1951 Phys. Rev. 82 664
[10] di Piazza A 2016 Phys. Rev. Lett. 117 213201
[11] Golub A, Villalba-Chávez S, and Müller C 2022 Phys. Rev. D 105 116016
[12] Zhao J, Hu Y T, Lu Y et al. 2022 Commun. Phys. 5 15
[13] Schützhold R, Gies H, and Dunne G 2008 Phys. Rev. Lett. 101 130404
[14] Jiang M, Su D D, Lin N S and Li Y J 2021 Chin. Phys. B 30 070306
[15] Jiang M, Su W, Lv Z Q, Lu X, Li Y J, Grobe R, and Su Q 2012 Phys. Rev. A 85 033408
[16] Kohlfürst C, Queisser F, and Schützhold R 2021 Phys. Rev. Res. 3 033153
[17] Ren Y L, Luo C Q, and Sitiwaldi I 2023 Phys. Rev. A 107 012210
[18] Sang H B, Jiang M, and Xie B S 2013 Chin. Phys. Lett. 30 111201
[19] Li Z L, Sang H B, and Xie B S 2013 Chin. Phys. Lett. 30 071201
[20] Olugh O, Li Z, and Xie B 2020 Phys. Lett. B 802 135259
[21] Li L J, Mohamedsedik M, and Xie B S 2021 Phys. Rev. D 104 036015
[22] Kohlfürst C, Ahmadiniaz N, Oertel J, and Schützhold R 2022 Phys. Rev. Lett. 129 241801
[23] Hebenstreit F and Fillion-Gourdeau F 2014 Phys. Lett. B 739 189
[24] Braun J W, Su Q, and Grobe R 1999 Phys. Rev. A 59 604
[25] Cheng T, Su Q, and Grobe R 2010 Contemp. Phys. 51 315
[26] Bauke H and Keitel C H 2011 Comput. Phys. Commun. 182 2454
[27] Fillion-Gourdeau F, Lorin E, and Bandrauk A D 2012 J. Phys. A 45 215304
[28] Dirac P A M 1930 Proc. R. Soc. A 126 360
[29] Su W, Jiang M, Lv Z Q, Li Y J, Sheng Z M, Grobe R, and Su Q 2012 Phys. Rev. A 86 013422
[30] Hebenstreit F, Alkofer R, Dunne G V, and Gies H 2009 Phys. Rev. Lett. 102 150404
[31] Aleksandrov I A, Plunien G, and Shabaev V M 2017 Phys. Rev. D 96 076006
Related articles from Frontiers Journals
[1] Dan-Dan Liang, Xin Shen, and Zhi Li. Dynamically Characterizing the Structures of Dirac Points via Wave Packets[J]. Chin. Phys. Lett., 2023, 40(11): 014201
[2] Peng Qian and Dong E. Liu. A Hierarchy in Majorana Non-Abelian Tests and Hidden Variable Models[J]. Chin. Phys. Lett., 2023, 40(10): 014201
[3] Manchao Zhang, Jie Zhang, Wenbo Su, Xueying Yang, Chunwang Wu, Yi Xie, Wei Wu, and Pingxing Chen. Extension of Linear Response Regime in Weak-Value Amplification Technique[J]. Chin. Phys. Lett., 2023, 40(4): 014201
[4] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 014201
[5] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 014201
[6] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 014201
[7] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 014201
[8] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 014201
[9] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 014201
[10] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 014201
[11] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 014201
[12] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 014201
[13] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 014201
[14] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 014201
[15] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 014201
Viewed
Full text


Abstract