FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Real-Time Observation of Instantaneous ac Stark Shift of a Vacuum Using a Zeptosecond Laser Pulse |
Dandan Su1 and Miao Jiang2,3* |
1Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China 2School of Science, China University of Mining and Technology, Beijing 100083, China 3State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China
|
|
Cite this article: |
Dandan Su and Miao Jiang 2024 Chin. Phys. Lett. 41 014201 |
|
|
Abstract Based on the numerical solution of the time-dependent Dirac equation, we propose a method to observe in real time the ac Stark shift of a vacuum driven by an ultra-intense laser field. By overlapping the ultra-intense pump pulse with another zeptosecond probe pulse whose photon energy is smaller than $2mc^2$, electron–positron pair creation can be controlled by tuning the time delay between the pump and probe pulses. Since the pair creation rate depends sensitively on the instantaneous vacuum potential, one can reconstruct the ac Stark shift of the vacuum potential according to the time-delay-dependent pair creation rate.
|
|
Received: 04 September 2023
Published: 16 January 2024
|
|
PACS: |
03.65.-w
|
(Quantum mechanics)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
03.65.Pm
|
(Relativistic wave equations)
|
|
12.20.Ds
|
(Specific calculations)
|
|
|
|
|
[1] | Peskin M 2018 An Introduction To Quantum Field Theory (New York: CRC Press) |
[2] | Hoi I C, Kockum A F, Tornberg L, Pourkabirian A, Johansson G, Delsing P, and Wilson C 2015 Nat. Phys. 11 1045 |
[3] | Casimir H B G 1948 Indag. Math. 10 261 |
[4] | Greiner W and Reinhardt J 2009 Quantum Electrodynamics (Berlin: Springer) |
[5] | He F, Ruiz C, Becker A, Thumm U, and Atomic J O P B 2011 J. Phys. B 44 211001 |
[6] | Fillion-Gourdeau F M C, Lorin E, and Bandrauk A D 2013 Phys. Rev. Lett. 110 013002 |
[7] | Heisenberg W and Euler H 1936 Z. Phys. 98 714 |
[8] | Sauter F 1931 Z. Phys. 69 742 |
[9] | Schwinger J 1951 Phys. Rev. 82 664 |
[10] | di Piazza A 2016 Phys. Rev. Lett. 117 213201 |
[11] | Golub A, Villalba-Chávez S, and Müller C 2022 Phys. Rev. D 105 116016 |
[12] | Zhao J, Hu Y T, Lu Y et al. 2022 Commun. Phys. 5 15 |
[13] | Schützhold R, Gies H, and Dunne G 2008 Phys. Rev. Lett. 101 130404 |
[14] | Jiang M, Su D D, Lin N S and Li Y J 2021 Chin. Phys. B 30 070306 |
[15] | Jiang M, Su W, Lv Z Q, Lu X, Li Y J, Grobe R, and Su Q 2012 Phys. Rev. A 85 033408 |
[16] | Kohlfürst C, Queisser F, and Schützhold R 2021 Phys. Rev. Res. 3 033153 |
[17] | Ren Y L, Luo C Q, and Sitiwaldi I 2023 Phys. Rev. A 107 012210 |
[18] | Sang H B, Jiang M, and Xie B S 2013 Chin. Phys. Lett. 30 111201 |
[19] | Li Z L, Sang H B, and Xie B S 2013 Chin. Phys. Lett. 30 071201 |
[20] | Olugh O, Li Z, and Xie B 2020 Phys. Lett. B 802 135259 |
[21] | Li L J, Mohamedsedik M, and Xie B S 2021 Phys. Rev. D 104 036015 |
[22] | Kohlfürst C, Ahmadiniaz N, Oertel J, and Schützhold R 2022 Phys. Rev. Lett. 129 241801 |
[23] | Hebenstreit F and Fillion-Gourdeau F 2014 Phys. Lett. B 739 189 |
[24] | Braun J W, Su Q, and Grobe R 1999 Phys. Rev. A 59 604 |
[25] | Cheng T, Su Q, and Grobe R 2010 Contemp. Phys. 51 315 |
[26] | Bauke H and Keitel C H 2011 Comput. Phys. Commun. 182 2454 |
[27] | Fillion-Gourdeau F, Lorin E, and Bandrauk A D 2012 J. Phys. A 45 215304 |
[28] | Dirac P A M 1930 Proc. R. Soc. A 126 360 |
[29] | Su W, Jiang M, Lv Z Q, Li Y J, Sheng Z M, Grobe R, and Su Q 2012 Phys. Rev. A 86 013422 |
[30] | Hebenstreit F, Alkofer R, Dunne G V, and Gies H 2009 Phys. Rev. Lett. 102 150404 |
[31] | Aleksandrov I A, Plunien G, and Shabaev V M 2017 Phys. Rev. D 96 076006 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|