ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Twin-Capture Rydberg State Excitation Enhanced with Few-Cycle Laser Pulses |
Jing Zhao1, Jinlei Liu1, Xiaowei Wang1, and Zengxiu Zhao1,2* |
1Department of Physics, National University of Defense Technology, Changsha 410073, China 2Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
|
|
Cite this article: |
Jing Zhao, Jinlei Liu, Xiaowei Wang et al 2024 Chin. Phys. Lett. 41 013201 |
|
|
Abstract Quantum excitation is usually regarded as a transient process occurring instantaneously, leaving the underlying physics shrouded in mystery. Recent research shows that Rydberg-state excitation with ultrashort laser pulses can be investigated and manipulated with state-of-the-art few-cycle pulses. We theoretically find that the efficiency of Rydberg state excitation can be enhanced with a short laser pulse and modulated by varying the laser intensities. We also uncover new facets of the excitation dynamics, including the launching of an electron wave packet through strong-field ionization, the re-entry of the electron into the atomic potential and the crucial step where the electron makes a U-turn, resulting in twin captures into Rydberg orbitals. By tuning the laser intensity, we show that the excitation of the Rydberg state can be coherently controlled on a sub-optical-cycle timescale. Our work paves the way toward ultrafast control and coherent manipulation of Rydberg states, thus benefiting Rydberg-state-based quantum technology.
|
|
Received: 23 October 2023
Editors' Suggestion
Published: 02 January 2024
|
|
PACS: |
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
|
|
|
[1] | Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, and Jia S T 2020 Nat. Phys. 16 911 |
[2] | Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M, and Gleyzes S 2016 Nature 535 262 |
[3] | Luo L, Men L, Liu Z, Mudryk Y, Zhao X, Yao Y, Park J M, Shinar R, Shinar J, Ho K M, Perakis I E, Vela J, and Wang J 2017 Nat. Commun. 8 15565 |
[4] | Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vuletić V, and Lukin M D 2021 Nature 595 227 |
[5] | Vassen W, Cohen-Tannoudji C, Leduc M, Boiron D, Westbrook C I, Truscott A, Baldwin K, Birkl G, Cancio P, and Trippenbach M 2012 Rev. Mod. Phys. 84 175 |
[6] | Zimmermann H, Buller J, Eilzer S, and Eichmann U 2015 Phys. Rev. Lett. 114 123003 |
[7] | Grochmalicki J and Lewenstein M 1988 J. Phys. B 21 3285 |
[8] | Keldysh L V 1965 Sov. Phys. Usp. 8 496 |
[9] | Zhang D W, Lü Z H, Meng C, Du X Y, Zhou Z Y, Zhao Z X, and Yuan J M 2012 Phys. Rev. Lett. 109 243002 |
[10] | Zhao J, Liu J L, Wang X W, Yuan J M, and Zhao Z X 2022 Chin. Phys. Lett. 39 123201 |
[11] | Chini M, Wang X, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Heslar J, Telnov D A, Chu S I, and Chang Z 2014 Nat. Photonics 8 437 |
[12] | Xiong W H, Geng J W, Tang J Y, Peng L Y, and Gong Q 2014 Phys. Rev. Lett. 112 233001 |
[13] | Beaulieu S, Camp S, Descamps D, Comby A, Wanie V, Petit S, Legare F, Schafer K J, Gaarde M B, Catoire F, and Mairesse Y 2016 Phys. Rev. Lett. 117 203001 |
[14] | Yun H, Mun J H, Hwang S I, Park S B, Ivanov I A, Nam C H, and Kim K T 2018 Nat. Photonics 12 620 |
[15] | Tao W K, Wang L, Song P, Xiao F, Wang J C, Zheng Z G, Zhao J, Wang X W, and Zhao Z X 2023 Chin. Phys. Lett. 40 063201 |
[16] | Chetty D, Glover R D, Tong X M, deHarak B A, Xu H, Haram N, Bartschat K, Palmer A J, Luiten A N, Light P S, Litvinyuk I V, and Sang R T 2022 Phys. Rev. Lett. 128 173201 |
[17] | Matthews M, Morales F, Patas A, Lindinger A, Gateau J, Berti N, Hermelin S, Kasparian J, Richter M, Bredtmann T, Smirnova O, Wolf J P, and Ivanov M 2018 Nat. Phys. 14 695 |
[18] | Ivanov I A, Kheifets A S, and Kim K T 2022 Sci. Rep. 12 17048 |
[19] | Li Q G, Tong X M, Morishita T, Wei H, and Lin C D 2014 Phys. Rev. A 89 023421 |
[20] | Li Q G, Tong X M, Morishita T, Jin C, Wei H, and Lin C D 2014 J. Phys. B 47 204019 |
[21] | Zimmermann H, Patchkovskii S, Ivanov M, and Eichmann U 2017 Phys. Rev. Lett. 118 013003 |
[22] | Chetty D, Glover R D, deHarak B A, Tong X M, Xu H, Pauly T, Smith N, Hamilton K R, Bartschat K, Ziegel J P, Douguet N, Luiten A N, Light P S, Litvinyuk I V, and Sang R T 2020 Phys. Rev. A 101 053402 |
[23] | Nubbemeyer T, Gorling K, Saenz A, Eichmann U, and Sandner W 2008 Phys. Rev. Lett. 101 233001 |
[24] | Liu M Q, Xu S P, Hu S L, Becker W, Quan W, Liu X J, and Chen J 2021 Optica 8 765 |
[25] | Hu S L, Hao X L, Lv H, Liu M Q, Yang T X, Xu H F, Jin M X, Ding D J, Li Q G, Li W D, Becker W, and Chen J 2019 Opt. Express 27 31629 |
[26] | Piraux B, Mota-Furtado F, O'Mahony P F, Galstyan A, and Popov Y V 2017 Phys. Rev. A 96 043403 |
[27] | Zhang B, Chen W, and Zhao Z 2014 Phys. Rev. A 90 023409 |
[28] | Xu S P, Liu M Q, Hu S L, Shu Z, Quan W, Xiao Z L, Zhou Y, Wei M Z, Zhao M, Sun R P, Wang Y, Hua L, Gong C, Lai X, Chen J, and Liu X 2020 Phys. Rev. A 102 043104 |
[29] | Ammosov M V, Delone N B, and Krainov V P 1986 Sov. Phys.-JETP 64 1191 |
[30] | Arbó D G, Ishikawa K L, Schiessl K, Persson E, and Burgdörfer J 2010 Phys. Rev. A 82 043426 |
[31] | Meckel M, Staudte A, Patchkovskii S, Villeneuve D M, Corkum P B, Dorner R, and Spanner M 2014 Nat. Phys. 10 594 |
[32] | Bian X B and Bandrauk A D 2012 Phys. Rev. Lett. 108 263003 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|