Chin. Phys. Lett.  2023, Vol. 40 Issue (8): 087101    DOI: 10.1088/0256-307X/40/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spectrum of the Hole Excitation in Spin-Orbit Mott Insulator Na$_{2}$IrO$_{3}$
Wei Wang1, Zhao-Yang Dong2, Shun-Li Yu3,4*, and Jian-Xin Li3,4*
1School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
3National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
4Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Wei Wang, Zhao-Yang Dong, Shun-Li Yu et al  2023 Chin. Phys. Lett. 40 087101
Download: PDF(5710KB)   PDF(mobile)(6527KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the motion of a hole with internal degrees of freedom, introduced to the zigzag magnetic ground state of Na$_{2}$IrO$_{3}$, by using the self-consistent Born approximation. We find that the low-, intermediate-, and high-energy spectra are primarily attributed to the singlet, triplet, and quintet hole contributions, respectively. The spectral functions exhibit distinct features such as the electron-like dispersion of low-energy states near the $\varGamma$ point, the maximum $M$-point intensity of mid-energy states, and the hole-like dispersion of high-energy states. These features are robust and almost insensitive to the exchange model and Hund's coupling, and are in qualitative agreement with the angular-resolved photoemission spectra observed in Na$_{2}$IrO$_{3}$. Our results reveal that the interference between internal degrees of freedom in different sublattices plays an important role in inducing the complex dispersions.
Received: 06 June 2023      Express Letter Published: 11 July 2023
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/8/087101       OR      https://cpl.iphy.ac.cn/Y2023/V40/I8/087101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Wang
Zhao-Yang Dong
Shun-Li Yu
and Jian-Xin Li
[1] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] Liang S, Doucot B, and Anderson P W 1988 Phys. Rev. Lett. 61 365
[3] Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759
[4] Kane C L, Lee P A, and Read N 1989 Phys. Rev. B 39 6880
[5] Martinez G and Horsch P 1991 Phys. Rev. B 44 317
[6] Liu Z P and Manousakis E 1991 Phys. Rev. B 44 2414
[7] Dagotto E 1994 Rev. Mod. Phys. 66 763
[8] Leung P W and Gooding R J 1995 Phys. Rev. B 52 R15711
[9] Damascelli A, Hussain Z, and Shen Z X 2003 Rev. Mod. Phys. 75 473
[10] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, and Rotenberg E 2008 Phys. Rev. Lett. 101 076402
[11] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, and Arima T 2009 Science 323 1329
[12] Singh Y and Gegenwart P 2010 Phys. Rev. B 82 064412
[13] Singh Y, Manni S, Reuther J, Berlijn T, Thomale R, Ku W, Trebst S, and Gegenwart P 2012 Phys. Rev. Lett. 108 127203
[14] Rau J G, Lee E K H, and Kee H Y 2016 Annu. Rev. Condens. Matter Phys. 7 195
[15] Jackeli G and Khaliullin G 2009 Phys. Rev. Lett. 102 017205
[16] Kim B H, Shirakawa T, and Yunoki S 2016 Phys. Rev. Lett. 117 187201
[17] Plumb K W, Clancy J P, Sandilands L J, Shankar V V, Hu Y F, Burch K S, Kee H Y, and Kim Y J 2014 Phys. Rev. B 90 041112
[18] Banerjee A, Bridges C A, Yan J Q, Aczel A A, Li L, Stone M B, Granroth G E, Lumsden M D, Yiu Y, Knolle J, Bhattacharjee S, Kovrizhin D L, Moessner R, Tennant D A, Mandrus D G, and Nagler S E 2016 Nat. Mater. 15 733
[19] Winter S M, Tsirlin A A, Daghofer M, van den Brink J, Singh Y, Gegenwart P, and Valentí R 2017 J. Phys.: Condens. Matter 29 493002
[20] Ran K J, Wang J H, Wang W, Dong Z Y, Ren X, Bao S, Li S C, Ma Z, Gan Y, Zhang Y T, Park J T, Deng G, Danilkin S, Yu S L, Li J X, and Wen J 2017 Phys. Rev. Lett. 118 107203
[21] Kitaev A 2006 Ann. Phys. 321 2
[22] Johnson R D, Williams S C, Haghighirad A A, Singleton J, Zapf V, Manuel P, Mazin I I, Li Y, Jeschke H O, Valentí R, and Coldea R 2015 Phys. Rev. B 92 235119
[23] Cao H B, Banerjee A, Yan J Q, Bridges C A, Lumsden M D, Mandrus D G, Tennant D A, Chakoumakos B C, and Nagler S E 2016 Phys. Rev. B 93 134423
[24] Chaloupka J, Jackeli G, and Khaliullin G 2010 Phys. Rev. Lett. 105 027204
[25] Chaloupka J, Jackeli G, and Khaliullin G 2013 Phys. Rev. Lett. 110 097204
[26] Rau J G, Lee E K H, and Kee H Y 2014 Phys. Rev. Lett. 112 077204
[27] Yamaji Y, Nomura Y, Kurita M, Arita R, and Imada M 2014 Phys. Rev. Lett. 113 107201
[28] Winter S M, Li Y, Jeschke H O, and Valentí R 2016 Phys. Rev. B 93 214431
[29] Kim H S and Kee H Y 2016 Phys. Rev. B 93 155143
[30] Wang W, Dong Z Y, Yu S L, and Li J X 2017 Phys. Rev. B 96 115103
[31] Kimchi I and You Y Z 2011 Phys. Rev. B 84 180407
[32] Rousochatzakis I, Reuther J, Thomale R, Rachel S, and Perkins N B 2015 Phys. Rev. X 5 041035
[33] Trousselet F, Berciu M, Oleś A M, and Horsch P 2013 Phys. Rev. Lett. 111 037205
[34] Trousselet F, Horsch P, Oleś A M, and You W L 2014 Phys. Rev. B 90 024404
[35] Wang B B, Wang W, Yu S L, and Li J X 2018 J. Phys.: Condens. Matter 30 385602
[36] Comin R, Levy G, Ludbrook B, Zhu Z H, Veenstra C N, Rosen J A, Singh Y, Gegenwart P, Stricker D, Hancock J N, van der Marel D, Elfimov I S, and Damascelli A 2012 Phys. Rev. Lett. 109 266406
[37] Alidoust N, Liu C, Xu S Y, Belopolski I, Qi T, Zeng M, Sanchez D S, Zheng H, Bian G, Neupane M, Liu Y T, Wilson S D, Lin H, Bansil A, Cao G, and Hasan M Z 2016 Phys. Rev. B 93 245132
[38] Moreschini L, Lo V I, Breznay N P, Moser S, Ulstrup S, Koch R, Wirjo J, Jozwiak C, Kim K S, Rotenberg E, Bostwick A, Analytis J G, and Lanzara A 2017 Phys. Rev. B 96 161116
[39] Rodriguez J, Lopez G, Ramirez F, Breznay N P, Kealhofer R, Nagarajan V, Latzke D, Wilson S, Marrufo N, Santiago P, Lara J, Diego A, Molina E, Rosser D, Tavassol H, Lanzara A, Analytis J G, and Ojeda-Aristizabal C 2020 Phys. Rev. B 101 235415
[40] Liu Z P and Manousakis E 1992 Phys. Rev. B 45 2425
[41] Yin W G and Ku W 2009 Phys. Rev. B 79 214512
[42]See Supplemental Materials for the detail derivation, and the spectra with different models.
[43] Muniz R A, Kato Y, and Batista C D 2014 Prog. Theor. Exp. Phys. 2014 83I01
[44] Dong Z Y, Wang W, and Li J X 2018 Phys. Rev. B 97 205106
[45] Lüscher A, Läuchli A, Zheng W, and Sushkov O P 2006 Phys. Rev. B 73 155118
[46] Sushkov O P, Sawatzky G A, Eder R, and Eskes H 1997 Phys. Rev. B 56 11769
[47] Pärschke E M, Wohlfeld K, Foyevtsova K, and van den Brink J 2017 Nat. Commun. 8 686
Related articles from Frontiers Journals
[1] Xiangjian Qian and Mingpu Qin. Augmenting Density Matrix Renormalization Group with Disentanglers[J]. Chin. Phys. Lett., 2023, 40(5): 087101
[2] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 087101
[3] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 087101
[4] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 087101
[5] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 087101
[6] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 087101
[7] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 087101
[8] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 087101
[9] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 087101
[10] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 087101
[11] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 087101
[12] Haiwei Li, Shusen Ye, Jianfa Zhao, Changqing Jin, and Yayu Wang. Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(1): 087101
[13] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 087101
[14] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 087101
[15] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 087101
Viewed
Full text


Abstract