Chin. Phys. Lett.  2023, Vol. 40 Issue (8): 087103    DOI: 10.1088/0256-307X/40/8/087103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Surface Ferron Excitations in Ferroelectrics and Their Directional Routing
Xi-Han Zhou1, Chengyuan Cai1, Ping Tang2, R. L. Rodríguez-Suárez3, Sergio M. Rezende4, Gerrit E. W. Bauer5,6, and Tao Yu1*
1School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
2WPI-AIMR, Tohoku University, 2-1-1 Katahira, 980-8577 Sendai, Japan
3Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile
4Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil
5WPI-AIMR and Institute for Materials Research and CSRN, Tohoku University, Sendai 980-8577, Japan
6Kavli Institute for Theoretical Sciences, University of the Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Xi-Han Zhou, Chengyuan Cai, Ping Tang et al  2023 Chin. Phys. Lett. 40 087103
Download: PDF(14131KB)   PDF(mobile)(15549KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The duality between electric and magnetic dipoles inspires recent comparisons between ferronics and magnonics. Here we predict surface polarization waves or “ferrons” in ferroelectric insulators, taking the long-range dipolar interaction into account. We predict properties that are strikingly different from the magnetic counterpart, i.e. the surface Damon–Eshbach magnons in ferromagnets. The dipolar interaction pushes the ferron branch with locked circular polarization and momentum to the ionic plasma frequency. The low-frequency modes are on the other hand in-plane polarized normal to their wave vectors. The strong anisotropy of the lower branch renders directional emissions of electric polarization and chiral near fields when activated by a focused laser beam, allowing optical routing in ferroelectric devices.
Received: 20 May 2023      Published: 05 August 2023
PACS:  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  77.55.-g (Dielectric thin films)  
  43.35.Pt (Surface waves in solids and liquids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/8/087103       OR      https://cpl.iphy.ac.cn/Y2023/V40/I8/087103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xi-Han Zhou
Chengyuan Cai
Ping Tang
R. L. Rodríguez-Suárez
Sergio M. Rezende
Gerrit E. W. Bauer
and Tao Yu
[1]Duality (electricity and magnetism), https://en.wikipedia.org/wiki/Dualit_(electricity_and_magnetism)
[2]Jackson J D 1998 Classical Electrodynamics (New York: Wiley)
[3] Bauer G E W, Tang P, Iguchi R, and Uchida K 2022 J. Magn. Magn. Mater. 541 168468
[4] Barman A, Gubbiotti G, Ladak S et al. 2021 J. Phys.: Condens. Matter 33 413001
[5] Brataas A, van Wees B, Klein O, de Loubens G, and Viret M 2020 Phys. Rep. 885 1
[6] Yu T, Luo Z C, and Bauer G E W 2023 Phys. Rep. 1009 1
[7] Walker L R 1957 Phys. Rev. 105 390
[8] Damon R W and Eshbach J R 1961 J. Phys. Chem. Solids 19 308
[9] An T, Vasyuchka V I, Uchida K, Chumak A V, Yamaguchi K, Harii K, Ohe J, Jungfleisch M B, Kajiwara Y, Adachi H, Hillebrands B, Maekawa S, and Saitoh E 2013 Nat. Mater. 12 549
[10] Wid O, Bauer J, Müller A, Breitenstein O, Parkin S S P, and Schmidt G 2016 Sci. Rep. 6 28233
[11] Shigematsu E, Ando Y, Dushenko S, Shinjo T, and Shiraishi M 2018 Appl. Phys. Lett. 112 212401
[12] Wang P, Zhou L F, Jiang S W, Luan Z Z, Shu D J, Ding H F, and Wu D 2018 Phys. Rev. Lett. 120 047201
[13] Yu T, Sharma S, Blanter Y M, and Bauer G E W 2019 Phys. Rev. B 99 174402
[14] Mohseni M, Verba R, Brächer T, Wang Q, Bozhko D A, Hillebrands B, and Pirro P 2019 Phys. Rev. Lett. 122 197201
[15] Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, and Nakamura Y 2016 Phys. Rev. Lett. 116 223601
[16] Sharma S, Blanter Y M, and Bauer G E W 2018 Phys. Rev. Lett. 121 087205
[17] Yamamoto K, Thiang G C, Pirro P, Kim K W, Everschor-Sitte K, and Saitoh E 2019 Phys. Rev. Lett. 122 217201
[18] Cottam M G, Tilley D R, and Zeks B 1984 J. Phys. C 17 1793
[19] Bauer G E W, Iguchi R, and Uchida K I 2021 Phys. Rev. Lett. 126 187603
[20] Tang P, Iguchi R, Uchida K I, and Bauer G E W 2022 Phys. Rev. Lett. 128 047601
[21] Tang P, Iguchi R, Uchida K I, and Bauer G E W 2022 Phys. Rev. B 106 L081105
[22] Tang P, Uchida K I, and Bauer G E W 2023 Phys. Rev. B 107 L121406
[23] Wooten B, Iguchi R, Tang P, Kang J S, Uchida K I, Bauer G E W, and Heremans J P 2023 Sci. Adv. 9 eadd7194
[24]Chandra P and Littlewood P B 2007 A Landau Primer for Ferroelectrics in Physics of Ferroelectrics (Berlin: Springer-Verlag) pp 69–116
[25]Novotny L and Hecht B 2006 Principles of Nano-Optics (Cambridge: Cambridge University Press)
[26] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, and Zoller P 2017 Nature 541 473
[27] Bliokh K Y and Nori F 2015 Phys. Rep. 592 1
[28] Matsuo M, Ieda J, and Maekawa S 2015 Front. Phys. 3 54
[29]Viktorov I A 1967 Rayleigh and Lamb Waves: Physical Theory and Applications (New York: Plenum Press)
[30] Bliokh K Y, Smirnova D, and Nori F 2015 Science 348 1448
[31] Davis T J and Gómez D E 2017 Rev. Mod. Phys. 89 011003
[32]Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer)
[33]Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
[34] Pitarke J M, Silkin V M, Chulkov E V, and Echenique P M 2007 Rep. Prog. Phys. 70 1
[35] Rodríguez-Fortuñono F J, Marino G, Ginzburg P, O'Connor D, Martínez A, Wurtz G A, and Zayats A V 2013 Science 340 328
[36] Petersen J, Volz J, and Rauschenbeutel A 2014 Science 346 67
[37] Tani K 1969 J. Phys. Soc. Jpn. 26 93
[38] Ishibashi Y 1989 Ferroelectrics 98 193
[39] Sivasubramanian S, Widom A, and Srivastava Y N 2004 Ferroelectrics 300 43
[40] Widom A, Sivasubramanian S, Vittoria C, Yoon S, and Srivastava Y N 2010 Phys. Rev. B 81 212402
[41]Zhirnov V A 1958 Zh. Eksp. Teor. Fiz. 35 1175 [1959 Sov. Phys. JETP 35 822]
[42] Ishibashi Y and Salje E 2002 J. Phys. Soc. Jpn. 71 2800
[43] Cao W W and Cross L E 1991 Phys. Rev. B 44 5
[44] Cao W W, Barsch G R, and Krumhansl J A 1990 Phys. Rev. B 42 6396
[45] Hlinka J and Márton P 2006 Phys. Rev. B 74 104104
[46] Haun M J, Furman E, Jang S, McKinstry H, and Cross L 1987 J. Appl. Phys. 62 3331
[47] Morozovska A N, Eliseev E A, Scherbakov C M, and Vysochanskii Y M 2016 Phys. Rev. B 94 174112
[48] Scrymgeour D A, Gopalan V, Itagi A, Saxena A, and Swart P J 2005 Phys. Rev. B 71 184110
[49] Tomeno I and Matsumura S 1988 Phys. Rev. B 38 606
[50] Fuchs R and Kliewer K L 1965 Phys. Rev. 140 A2076
[51] Bakker H J, Hunsche S, and Kurz H 1998 Rev. Mod. Phys. 70 523
[52] Stoyanov N S, Ward D W, Feurer T, and Nelson K A 2002 Nat. Mater. 1 95
[53] Zhuang S H and Hu J M 2022 Phys. Rev. B 106 L140302
[54] Adachi H, Ikeda N, and Saitoh E 2023 Phys. Rev. B 107 155142
[55]Supplemental Material for the derivation of the characteristic equations, the surface ferronic modes, the bulk ferronic modes, as well as the quantum approach for the optical routing of surface ferrons.
[56] Anderson P W 1958 Phys. Rev. 112 1900
[57] Nambu Y 1960 Phys. Rev. 117 648
[58] Richman M S, Li X, and Caruso A 2019 J. Appl. Phys. 125 184103
[59] Ulbricht R, Hendry E, Shan J, Heinz T F, and Bonn M 2011 Rev. Mod. Phys. 83 543
[60] Ruchert C, Vicario C, and Hauri C P 2013 Phys. Rev. Lett. 110 123902
[61] Zang X F, Mao C X, Guo X G, You G J, Yang H, Chen L, Zhu Y M, and Zhuang S L 2018 Appl. Phys. Lett. 113 071102
[62] Chen H, Wu Z X, Li Z Y, Luo Z F, Jiang X, Wen Z Q, Zhu L G, Zhou X, Li H, Shang Z G, Zhang Z H, Zhang K, Liang G F, Jiang S L, Du L H, and Chen G 2018 Opt. Express 26 29817
[63] Mankowsky R, von Hoegen A, Fórst M, and Cavalleri A 2017 Phys. Rev. Lett. 118 197601
[64] Hashimoto Y, Daimon S, Iguchi R, Oikawa Y, Shen K, Sato K, Bossini D, Tabuchi Y, Satoh T, Hillebrands B, Bauer G E W, Johansen T H, Kirilyuk A, Rasing T, and Saitoh E 2017 Nat. Commun. 8 15859
[65] Espinosa-Soria A, Rodríguez-Fortuñono F J, Griol A, and Martínez A 2017 Nano Lett. 17 3139
[66] Ma Z T, Wang P, Cao Y, Tang H G, and Ming H 2006 Chin. Phys. Lett. 23 2545
[67] Li C H, Xia Z W, Wang Y P, and Zhang X H 2016 Chin. Phys. Lett. 33 105201
Related articles from Frontiers Journals
[1] Jin-Ling Wang, Wen Wen, Ji Lin, and Hui-Jun Li. Generation and Control of Shock Waves in Exciton-Polariton Condensates[J]. Chin. Phys. Lett., 2023, 40(7): 087103
[2] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 087103
[3] Zheng-Hua Tang, Zheng-Sheng Jiang, Chun-Zhi Jiang, Da-Jun Lei, Jian-Quan Huang, Feng Qiu, Hai-Ming Deng, Min Yao, Xiao-Yi Huang. Field Tunable Polaritonic Band Gaps in Fibonacci Piezoelectric Superlattices[J]. Chin. Phys. Lett., 2018, 35(7): 087103
[4] Ya-Jing Jiang, Hao Lü, Hui Jing. Superradiance-Driven Phonon Laser[J]. Chin. Phys. Lett., 2018, 35(4): 087103
[5] CAI Yong-Jing, LI Ming, XIONG Xiao, YU Le, REN Xi-Feng, GUO Guo-Ping, GUO Guang-Can. Waveguide Mode Splitter Based on Multi-mode Dielectric-Loaded Surface Plasmon Polariton Waveguide[J]. Chin. Phys. Lett., 2015, 32(10): 087103
[6] CHEN Zong-Qiang, QI Ji-Wei, CHEN Jing, LI Yu-Dong, HAO Zhi-Qiang, LU Wen-Qiang, XU Jing-Jun, SUN Qian . Fano Resonance Based on Multimode Interference in Symmetric Plasmonic Structures and its Applications in Plasmonic Nanosensors[J]. Chin. Phys. Lett., 2013, 30(5): 087103
[7] HAO Zhi-Qiang, LI Yu-Dong, CHEN Jing, CHEN Zong-Qiang, XU Jing-Jun, SUN Qian. Beam Manipulation by Metallic Nanoslit Arrays with Perpendicular Cuts inside Slits[J]. Chin. Phys. Lett., 2012, 29(11): 087103
[8] TANG Zheng-Hua, ZHANG Wei-Yi. A Field Tunable Multichannel Microwave Delay-Line Using a Piezoelectric-Piezomagnetic Superlattice[J]. Chin. Phys. Lett., 2012, 29(11): 087103
[9] MAO Fei-Long, XIE Jin-Jin, FAN Qing-Yan, ZHANG Li-Jian, AN Zheng-Hua. Polarization-Selective Collimation Effect with a Reflective Plasmonic Cavity[J]. Chin. Phys. Lett., 2012, 29(7): 087103
[10] WANG Xiao-Lei, WANG Pei, MIN Chang-Jun, CHEN Jun-Xue, LU Yong-Hua, MING Hai. Modulation of Splitting Beam Angle with Metal--Nonlinear Optical Material--Metal (M-NL-M) Array Structure[J]. Chin. Phys. Lett., 2008, 25(12): 087103
[11] S. S. Ng, Z. Hassan, H. Abu Hassan. Composition Dependence of Surface Phonon Polariton Mode in Wurtzite InxGa1-xN (0≤x≤1) Ternary Alloy[J]. Chin. Phys. Lett., 2008, 25(12): 087103
[12] CHENG Ze. Thermodynamics of Phase Transitions of a Kerr Nonlinear Blackbody[J]. Chin. Phys. Lett., 2008, 25(9): 087103
[13] WANG Fa-Qiang, ZHANG Zhi-Ming. Evolution of Coherent Light in a Simple Polariton Model[J]. Chin. Phys. Lett., 2008, 25(3): 087103
[14] MIN Chang-Jun, WANG Pei, JIAO Xiao-Jin, MING Hai. Numerical Investigation of Surface Plasmons Associated Subwavelength Optical Single-Pass Effect[J]. Chin. Phys. Lett., 2007, 24(10): 087103
[15] PANG Qian-Jun. Analytical Study of Nonclassical Behaviour for a Disturbed Non-Degenerated Parameter Amplifier[J]. Chin. Phys. Lett., 2007, 24(4): 087103
Viewed
Full text


Abstract