CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Ambipolar Doping of Monolayer FeSe by Interface Engineering |
Fang-Jun Cheng1, Yi-Min Zhang1, Jia-Qi Fan1, Can-Li Song1,2*, Xu-Cun Ma1,2, and Qi-Kun Xue1,2,3,4 |
1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China 2Frontier Science Center for Quantum Information, Beijing 100084, China 3Beijing Academy of Quantum Information Sciences, Beijing 100193, China 4Southern University of Science and Technology, Shenzhen 518055, China
|
|
Cite this article: |
Fang-Jun Cheng, Yi-Min Zhang, Jia-Qi Fan et al 2023 Chin. Phys. Lett. 40 086801 |
|
|
Abstract We report on ambipolar modulation doping of monolayer FeSe epitaxial films grown by molecular beam epitaxy and in situ spectroscopic measurements via a cryogenic scanning tunneling microscopy. It is found that hole doping kills superconductivity in monolayer FeSe films on metallic Ir(001) substrates, whereas electron doping from polycrystalline IrO$_2$/SrTiO$_3$ substrate enhances significantly the superconductivity with an energy gap of 10.3 meV. By exploring substrate-dependent superconductivity, we elucidate the essential impact of substrate work functions on the superconductivity of monolayer FeSe films. Our results therefore offer a valuable reference guide for further enhancement of the transition temperature $T_{\rm c}$ in FeSe-based superconductors by interface engineering.
|
|
Received: 31 March 2023
Editors' Suggestion
Published: 21 July 2023
|
|
PACS: |
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
07.79.Cz
|
(Scanning tunneling microscopes)
|
|
07.79.-v
|
(Scanning probe microscopes and components)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
|
|
|
[1] | Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, and Xue Q K 2012 Chin. Phys. Lett. 29 037402 |
[2] | He S L, He J F, Zhang W H, Zhao L, Liu D, Liu X, Mou D X, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y Y, Liu Y, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Chen X, Ma X C, Xue Q K, and Zhou X J 2013 Nat. Mater. 12 605 |
[3] | Zhang W H, Li Z, Li F S, Zhang H M, Peng J P, Tang C J, Wang Q Y, He K, Chen X, Wang L, Ma X C, and Xue Q K 2014 Phys. Rev. B 89 060506(R) |
[4] | Pedersen A K, Ichinokura S, Tanaka T, Shimizu R, Hitosugi T, and Hirahara T 2020 Phys. Rev. Lett. 124 227002 |
[5] | Zhou Y J and Millis A J 2016 Phys. Rev. B 93 224506 |
[6] | Zhao W W, Li M, Chang C Z, Jiang J, Wu L, Liu C, Moodera J S, Zhu Y, and Chan M H W 2018 Sci. Adv. 4 eaao2682 |
[7] | Song C L, Wang Y L, Jiang Y P, Li Z, Wang L L, He K, Chen X, Hoffman J E, Ma X C, and Xue Q K 2014 Phys. Rev. Lett. 112 057002 |
[8] | Zhang S Y, Wei T, Guan J Q, Zhu Q, Qin W, Wang W H, Zhang J D, Plummer E W, Zhu X, Zhang Z, and Guo J D 2019 Phys. Rev. Lett. 122 066802 |
[9] | Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, and Shen Z X 2014 Nature 515 245 |
[10] | Zhang H M, Zhang D, Lu X W, Liu C, Zhou G Y, Ma X C, Wang L, Jiang P, Xue Q K, and Bao X H 2017 Nat. Commun. 8 214 |
[11] | Peng R, Zou K, Han M G, Albright S D, Hong H, Lau C, Xu H C, Zhu Y, Walker F J, and Ahn C H 2020 Sci. Adv. 6 eaay4517 |
[12] | Zou K, Mandal S, Albright S D, Peng R, Pu Y, Kumah D, Lau C, Simon G H, Dagdeviren O E, He X, Boovi I, Schwarz U D, Altman E I, Feng D, Walker F J, Ismail-Beigi S, and Ahn C H 2016 Phys. Rev. B 93 180506 |
[13] | Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L, Ma X, Xue Q K, and Zhao J 2016 Phys. Rev. Lett. 116 107001 |
[14] | Song Q, Yu T L, Lou X, Xie B P, Xu H C, Wen C H P, Yao Q, Zhang S Y, Zhu X T, Guo J D, Peng R, and Feng D L 2019 Nat. Commun. 10 758 |
[15] | Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H, Song Q, Zhang T, Xie B P, Gong X G, and Feng D L 2014 Nat. Commun. 5 5044 |
[16] | Pu Y J, Huang Z C, Xu H C, Xu D F, Song Q, Wen C H P, Peng R, and Feng D L 2016 Phys. Rev. B 94 115146 |
[17] | Ding H, Lv Y F, Zhao K, Wang W L, Wang L, Song C L, Chen X, Ma X C, and Xue Q K 2016 Phys. Rev. Lett. 117 067001 |
[18] | Rebec S N, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R G, and Shen Z X 2017 Phys. Rev. Lett. 118 067002 |
[19] | Zhou G Y, Zhang Q H, Zheng F W, Zhang D, Liu C, Wang X X, Song C L, He K, Ma X C, Gu L, Zhang P, Wang L L, and Xue Q K 2018 Sci. Bull. 63 747 |
[20] | Song C L, Zhang H M, Zhong Y, Hu X P, Ji S H, Wang L, He K, Ma X C, and Xue Q K 2016 Phys. Rev. Lett. 116 157001 |
[21] | Tang C J, Zhang D, Zang Y Y, Liu C, Zhou G Y, Li Z, Zheng C, Hu X, Song C L, Ji S, He K, Chen X, Wang L, Ma X C, and Xue Q K 2015 Phys. Rev. B 92 180507 |
[22] | Koslowski B, Notz R, and Ziemann P 2002 Surf. Sci. 496 153 |
[23] | Yu X Q, Ren M Q, Zhang Y M, Fan J Q, Han S, Song C L, Ma X C, and Xue Q K 2020 Phys. Rev. Mater. 4 051402(R) |
[24] | Bhat S G, Koshy A M, Pittala S, and Kumar P S A 2017 AIP Conf. Proc. 1859 020007 |
[25] | Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X, and Xue Q K 2011 Science 332 1410 |
[26] | Song Y H, Chen Z, Zhang Q H, Xu H C, Lou X, Chen X Y, Xu X F, Zhu X T, Tao R, Yu T L, Ru H, Wang Y H, Zhang T, Guo J D, Gu L, Xie Y W, Peng R, and Feng D L 2021 Nat. Commun. 12 5926 |
[27] | Barrett N, Rault J, Krug I, Vilquin B, Niu G, Gautier B, Albertini D, Lecoeur P, and Renault O 2010 Surf. Interface Anal. 42 1690 |
[28] | Xiong G, Shao R, Droubay T C, Joly A G, Beck K M, Chambers S A, and Hess W P 2007 Adv. Funct. Mater. 17 2133 |
[29] | Lim J Y, Oh J S, Ko B D, Cho J W, Kang S O, Cho G, Uhm H S, and Choi E H 2003 J. Appl. Phys. 94 764 |
[30] | Chalamala B R, Wei Y, Reuss R H, Aggarwal S, Gnade B E, Ramesh R, Bernhard J M, Sosa E D, and Golden D E 1999 Appl. Phys. Lett. 74 1394 |
[31] | Susaki T, Makishima A, and Hosono H 2011 Phys. Rev. B 83 115435 |
[32] | Zagonel L F, Büurer M, Bailly A, Renault O, Hoffmann M, Shih S J, Cockayne D, and Barrett N 2009 J. Phys.: Condens. Matter 21 314013 |
[33] | Zhou G Y, Zhang D, Liu C, Tang C J, Wang X X, Li Z, Song C L, Ji S H, He K, Wang L, Ma X C, and Xue Q K 2016 Appl. Phys. Lett. 108 202603 |
[34] | Zhang P, Peng X L, Qian T, Richard P, Shi X, Ma J Z, Fu B B, Guo Y L, Han Z Q, Wang S C, Wang L L, Xue Q K, Hu J P, Sun Y J, and Ding H 2016 Phys. Rev. B 94 104510 |
[35] | Zhang C F, Liu Z K, Chen Z Y, Xie Y W, He R H, Tang S, He J F, Li W, Jia T, Rebec S N, Ma E Y, Yan H, Hashimoto M, Lu D, Mo S K, Hikita Y, Moore R G, Hwang H Y, Lee D, and Shen Z 2017 Nat. Commun. 8 14468 |
[36] | Michaelson H B 1977 J. Appl. Phys. 48 4729 |
[37] | Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X C, and Xue Q K 2011 Phys. Rev. B 84 020503 |
[38] | Mammadov S, Ristein J, Krone J, Raidel C, Wanke M, Wiesmann V, Speck F, and Seyller T 2017 2D Mater. 4 015043 |
[39] | Singh U R, Warmuth J, Markmann V, Wiebe J, and Wiesendanger R 2017 J. Phys.: Condens. Matter 29 025004 |
[40] | Edmonds M T, Hellerstedt J T, Tadich A, Schenk A, O'onnell K M, Tosado J, Butch N P, Syers P, Paglione J, and Fuhrer M S 2014 ACS Nano 8 6400 |
[41] | Kawasaki J K, Kim C H, Nelson J N, Crisp S, Zollner C J, Biegenwald E, Heron J T, Fennie C J, Schlom D G, and Shen K M 2018 Phys. Rev. Lett. 121 176802 |
[42] | Jia T, Chen Z, Rebec S N, Hashimoto M, Lu D, Devereaux T P, Lee D H, Moore R G, and Shen Z X 2021 Adv. Sci. 8 2003454 |
[43] | Stuckenholz S, Büchner C, Heyde M, and Freund H J 2015 J. Phys. Chem. C 119 12283 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|