Chin. Phys. Lett.  2023, Vol. 40 Issue (8): 086801    DOI: 10.1088/0256-307X/40/8/086801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Ambipolar Doping of Monolayer FeSe by Interface Engineering
Fang-Jun Cheng1, Yi-Min Zhang1, Jia-Qi Fan1, Can-Li Song1,2*, Xu-Cun Ma1,2, and Qi-Kun Xue1,2,3,4
1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
2Frontier Science Center for Quantum Information, Beijing 100084, China
3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
4Southern University of Science and Technology, Shenzhen 518055, China
Cite this article:   
Fang-Jun Cheng, Yi-Min Zhang, Jia-Qi Fan et al  2023 Chin. Phys. Lett. 40 086801
Download: PDF(4782KB)   PDF(mobile)(4813KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report on ambipolar modulation doping of monolayer FeSe epitaxial films grown by molecular beam epitaxy and in situ spectroscopic measurements via a cryogenic scanning tunneling microscopy. It is found that hole doping kills superconductivity in monolayer FeSe films on metallic Ir(001) substrates, whereas electron doping from polycrystalline IrO$_2$/SrTiO$_3$ substrate enhances significantly the superconductivity with an energy gap of 10.3 meV. By exploring substrate-dependent superconductivity, we elucidate the essential impact of substrate work functions on the superconductivity of monolayer FeSe films. Our results therefore offer a valuable reference guide for further enhancement of the transition temperature $T_{\rm c}$ in FeSe-based superconductors by interface engineering.
Received: 31 March 2023      Editors' Suggestion Published: 21 July 2023
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  07.79.Cz (Scanning tunneling microscopes)  
  07.79.-v (Scanning probe microscopes and components)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/8/086801       OR      https://cpl.iphy.ac.cn/Y2023/V40/I8/086801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fang-Jun Cheng
Yi-Min Zhang
Jia-Qi Fan
Can-Li Song
Xu-Cun Ma
and Qi-Kun Xue
[1] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[2] He S L, He J F, Zhang W H, Zhao L, Liu D, Liu X, Mou D X, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y Y, Liu Y, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Chen X, Ma X C, Xue Q K, and Zhou X J 2013 Nat. Mater. 12 605
[3] Zhang W H, Li Z, Li F S, Zhang H M, Peng J P, Tang C J, Wang Q Y, He K, Chen X, Wang L, Ma X C, and Xue Q K 2014 Phys. Rev. B 89 060506(R)
[4] Pedersen A K, Ichinokura S, Tanaka T, Shimizu R, Hitosugi T, and Hirahara T 2020 Phys. Rev. Lett. 124 227002
[5] Zhou Y J and Millis A J 2016 Phys. Rev. B 93 224506
[6] Zhao W W, Li M, Chang C Z, Jiang J, Wu L, Liu C, Moodera J S, Zhu Y, and Chan M H W 2018 Sci. Adv. 4 eaao2682
[7] Song C L, Wang Y L, Jiang Y P, Li Z, Wang L L, He K, Chen X, Hoffman J E, Ma X C, and Xue Q K 2014 Phys. Rev. Lett. 112 057002
[8] Zhang S Y, Wei T, Guan J Q, Zhu Q, Qin W, Wang W H, Zhang J D, Plummer E W, Zhu X, Zhang Z, and Guo J D 2019 Phys. Rev. Lett. 122 066802
[9] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, and Shen Z X 2014 Nature 515 245
[10] Zhang H M, Zhang D, Lu X W, Liu C, Zhou G Y, Ma X C, Wang L, Jiang P, Xue Q K, and Bao X H 2017 Nat. Commun. 8 214
[11] Peng R, Zou K, Han M G, Albright S D, Hong H, Lau C, Xu H C, Zhu Y, Walker F J, and Ahn C H 2020 Sci. Adv. 6 eaay4517
[12] Zou K, Mandal S, Albright S D, Peng R, Pu Y, Kumah D, Lau C, Simon G H, Dagdeviren O E, He X, Boovi I, Schwarz U D, Altman E I, Feng D, Walker F J, Ismail-Beigi S, and Ahn C H 2016 Phys. Rev. B 93 180506
[13] Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L, Ma X, Xue Q K, and Zhao J 2016 Phys. Rev. Lett. 116 107001
[14] Song Q, Yu T L, Lou X, Xie B P, Xu H C, Wen C H P, Yao Q, Zhang S Y, Zhu X T, Guo J D, Peng R, and Feng D L 2019 Nat. Commun. 10 758
[15] Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H, Song Q, Zhang T, Xie B P, Gong X G, and Feng D L 2014 Nat. Commun. 5 5044
[16] Pu Y J, Huang Z C, Xu H C, Xu D F, Song Q, Wen C H P, Peng R, and Feng D L 2016 Phys. Rev. B 94 115146
[17] Ding H, Lv Y F, Zhao K, Wang W L, Wang L, Song C L, Chen X, Ma X C, and Xue Q K 2016 Phys. Rev. Lett. 117 067001
[18] Rebec S N, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R G, and Shen Z X 2017 Phys. Rev. Lett. 118 067002
[19] Zhou G Y, Zhang Q H, Zheng F W, Zhang D, Liu C, Wang X X, Song C L, He K, Ma X C, Gu L, Zhang P, Wang L L, and Xue Q K 2018 Sci. Bull. 63 747
[20] Song C L, Zhang H M, Zhong Y, Hu X P, Ji S H, Wang L, He K, Ma X C, and Xue Q K 2016 Phys. Rev. Lett. 116 157001
[21] Tang C J, Zhang D, Zang Y Y, Liu C, Zhou G Y, Li Z, Zheng C, Hu X, Song C L, Ji S, He K, Chen X, Wang L, Ma X C, and Xue Q K 2015 Phys. Rev. B 92 180507
[22] Koslowski B, Notz R, and Ziemann P 2002 Surf. Sci. 496 153
[23] Yu X Q, Ren M Q, Zhang Y M, Fan J Q, Han S, Song C L, Ma X C, and Xue Q K 2020 Phys. Rev. Mater. 4 051402(R)
[24] Bhat S G, Koshy A M, Pittala S, and Kumar P S A 2017 AIP Conf. Proc. 1859 020007
[25] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X, and Xue Q K 2011 Science 332 1410
[26] Song Y H, Chen Z, Zhang Q H, Xu H C, Lou X, Chen X Y, Xu X F, Zhu X T, Tao R, Yu T L, Ru H, Wang Y H, Zhang T, Guo J D, Gu L, Xie Y W, Peng R, and Feng D L 2021 Nat. Commun. 12 5926
[27] Barrett N, Rault J, Krug I, Vilquin B, Niu G, Gautier B, Albertini D, Lecoeur P, and Renault O 2010 Surf. Interface Anal. 42 1690
[28] Xiong G, Shao R, Droubay T C, Joly A G, Beck K M, Chambers S A, and Hess W P 2007 Adv. Funct. Mater. 17 2133
[29] Lim J Y, Oh J S, Ko B D, Cho J W, Kang S O, Cho G, Uhm H S, and Choi E H 2003 J. Appl. Phys. 94 764
[30] Chalamala B R, Wei Y, Reuss R H, Aggarwal S, Gnade B E, Ramesh R, Bernhard J M, Sosa E D, and Golden D E 1999 Appl. Phys. Lett. 74 1394
[31] Susaki T, Makishima A, and Hosono H 2011 Phys. Rev. B 83 115435
[32] Zagonel L F, Büurer M, Bailly A, Renault O, Hoffmann M, Shih S J, Cockayne D, and Barrett N 2009 J. Phys.: Condens. Matter 21 314013
[33] Zhou G Y, Zhang D, Liu C, Tang C J, Wang X X, Li Z, Song C L, Ji S H, He K, Wang L, Ma X C, and Xue Q K 2016 Appl. Phys. Lett. 108 202603
[34] Zhang P, Peng X L, Qian T, Richard P, Shi X, Ma J Z, Fu B B, Guo Y L, Han Z Q, Wang S C, Wang L L, Xue Q K, Hu J P, Sun Y J, and Ding H 2016 Phys. Rev. B 94 104510
[35] Zhang C F, Liu Z K, Chen Z Y, Xie Y W, He R H, Tang S, He J F, Li W, Jia T, Rebec S N, Ma E Y, Yan H, Hashimoto M, Lu D, Mo S K, Hikita Y, Moore R G, Hwang H Y, Lee D, and Shen Z 2017 Nat. Commun. 8 14468
[36] Michaelson H B 1977 J. Appl. Phys. 48 4729
[37] Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X C, and Xue Q K 2011 Phys. Rev. B 84 020503
[38] Mammadov S, Ristein J, Krone J, Raidel C, Wanke M, Wiesmann V, Speck F, and Seyller T 2017 2D Mater. 4 015043
[39] Singh U R, Warmuth J, Markmann V, Wiebe J, and Wiesendanger R 2017 J. Phys.: Condens. Matter 29 025004
[40] Edmonds M T, Hellerstedt J T, Tadich A, Schenk A, O'onnell K M, Tosado J, Butch N P, Syers P, Paglione J, and Fuhrer M S 2014 ACS Nano 8 6400
[41] Kawasaki J K, Kim C H, Nelson J N, Crisp S, Zollner C J, Biegenwald E, Heron J T, Fennie C J, Schlom D G, and Shen K M 2018 Phys. Rev. Lett. 121 176802
[42] Jia T, Chen Z, Rebec S N, Hashimoto M, Lu D, Devereaux T P, Lee D H, Moore R G, and Shen Z X 2021 Adv. Sci. 8 2003454
[43] Stuckenholz S, Büchner C, Heyde M, and Freund H J 2015 J. Phys. Chem. C 119 12283
Related articles from Frontiers Journals
[1] Peiyi Li, Jiachang Bi, Shunda Zhang, Rui Cai, Guanhua Su, Fugang Qi, Ruyi Zhang, Zhiyang Wei, and Yanwei Cao. Transformation of Hexagonal Lu to Cubic LuH$_{2+x}$ Single-Crystalline Films[J]. Chin. Phys. Lett., 2023, 40(8): 086801
[2] Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao, Qiang Zhao, Xing-Yu Chen, Mei-Hui Chen, Fang-Hui Zhu, Rui-Fen Dou, Hai-Wen Liu, Chang-Min Xiong, and Jia-Cai Nie. Anomalous Metallic State Driven by Magnetic Field at the LaAlO$_{3}$/KTaO$_{3}$ (111) Interface[J]. Chin. Phys. Lett., 2023, 40(3): 086801
[3] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 086801
[4] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 086801
[5] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 086801
[6] Ying Xiang, Qing Li, Yueying Li, Huan Yang, Yuefeng Nie, and Hai-Hu Wen. Physical Properties Revealed by Transport Measurements for Superconducting Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ Thin Films[J]. Chin. Phys. Lett., 2021, 38(4): 086801
[7] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, and Lu Ji. Erratum: Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon [Chin. Phys. Lett. 36 (2019) 057401][J]. Chin. Phys. Lett., 2021, 38(2): 086801
[8] Yang Ma, Jiasen Niu, Wenyu Xing, Yunyan Yao, Ranran Cai, Jirong Sun, X. C. Xie, Xi Lin, and Wei Han. Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface[J]. Chin. Phys. Lett., 2020, 37(11): 086801
[9] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 086801
[10] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 086801
[11] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 086801
[12] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 086801
[13] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 086801
[14] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, Lu Ji. Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon[J]. Chin. Phys. Lett., 2019, 36(5): 086801
[15] Hui-Ying Liu, Jun-Ren Shi. Radiation-Induced Oscillating Gap States of Nonequilibrium Two-Dimensional Superconductors[J]. Chin. Phys. Lett., 2018, 35(6): 086801
Viewed
Full text


Abstract