FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A Lay-up-Oriented CFRP-Substrate Metamaterial Absorber with High Insensitivity to Polarization |
Si-Hui Ma1,2, Ying-Guang Li1,2*, Jing Zhou1,2, and Ze-Xin Zhu1,2 |
1College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 2Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016, China
|
|
Cite this article: |
Si-Hui Ma, Ying-Guang Li, Jing Zhou et al 2023 Chin. Phys. Lett. 40 084201 |
|
|
Abstract Metamaterial absorbers with carbon fiber reinforced polymer (CFRP) substrates, which are called meta-CFRPs, have recently gained recognition for their excellent mechanical and electromagnetic performance. Different from traditional metamaterial absorbers with an isotropic substrate, meta-CFRPs with a highly anisotropic CFRP substrate are facing challenges in acquiring polarization-insensitive absorption. Here, a lay-up-oriented structure design method is proposed to solve this problem. Considering the lay-up configuration of CFRP laminates, metallic patterns are designed under corresponding polarization angles and then united together to form an integral structure. A meta-CFRP with a typical CFRP lay-up configuration([0$^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}$]$_{3s}$) is designed and tested. The experimental results exhibit over 99% microwave absorptivity at 2.44 GHz for all polarization angles. The maximum shift among the resonance peaks of the curves at all polarization angles is only 0.021 GHz. Further studies show that when there are cross-ply laminates in the first few layers of the CFRP substrate, the lay-up-oriented design method can be effectively simplified by ignoring the subsequent lay-up orientations after the first cross-ply layers. Our method can not only provide an effective way for acquiring polarization-insensitive microwave response on meta-CFRPs but also be expected to be promoted to metamaterial absorbers with other anisotropic materials.
|
|
Received: 12 May 2023
Published: 09 August 2023
|
|
PACS: |
42.25.Ja
|
(Polarization)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
72.80.Tm
|
(Composite materials)
|
|
|
|
|
[1] | Landy N I, Sajuyigbe S, Mock J J, Smith D R, and Padilla W J 2008 Phys. Rev. Lett. 100 207402 |
[2] | Iwaszczuk K, Strikwerda A C, Fan K B, Zhang X, Averitt R D, and Jepsen P U 2012 Opt. Express 20 635 |
[3] | Zhang C, Cheng Q, Yang J, Zhao J, and Cui T J 2017 Appl. Phys. Lett. 110 143511 |
[4] | Zhou J, Li Y G, Yang T, Xue W Z, Hao X Z, and Gao J 2022 Int. J. Adv. Manuf. Technol. 123 1111 |
[5] | Zhou J, Li Y G, Zhu Z X, Xu E Y, Li S P, and Sui S C 2022 Compos. Sci. Technol. 218 109200 |
[6] | Mgbemena C O, Li D, Lin M F, Liddel P D, Katnam K B, Thakur V K, and Nezhad H Y 2018 Compos. Part A 115 88 |
[7] | Huang H L, Xia H, Guo Z B, Xie D, and Li H J 2017 Chin. Phys. Lett. 34 117801 |
[8] | Bakır M, Karaaslan M, Unal E, Akgol O, and Sabah C 2017 Opto-Electron. Rev. 25 318 |
[9] | Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X, and Wang X 2012 J. Appl. Phys. 111 044902 |
[10] | Li L, Yang Y, and Liang C H 2011 J. Appl. Phys. 110 063702 |
[11] | Yu F, Yang X X, Zhong H T, Chu C Y, and Gao S 2018 Appl. Phys. Lett. 113 123903 |
[12] | Grant J, Ma Y, Saha S, Khalid A, and Cumming D R S 2011 Opt. Lett. 36 3476 |
[13] | Ghosh S, Bhattacharyya S, Kaiprath Y, and Srivastava K V 2014 J. Appl. Phys. 115 104503 |
[14] | Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, and Zhou L 2007 Phys. Rev. Lett. 99 063908 |
[15] | Yu P, Besteiro L V, Huang Y J, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, and Wang Z M 2019 Adv. Opt. Mater. 7 1800995 |
[16] | Cheng Y Z, Yang H L, Cheng Z Z, and Wu N 2011 Appl. Phys. A 102 99 |
[17] | Maier T and Brückl H 2009 Opt. Lett. 34 3012 |
[18] | Shrekenhamer D, Chen W C, and Padilla W J 2013 Phys. Rev. Lett. 110 177403 |
[19] | Wang B X, Tang C, Niu Q, He Y, and Chen T 2019 Nanoscale Res. Lett. 14 64 |
[20] | Ding F, Cui Y X, Ge X C, Jin Y, and He S L 2012 Appl. Phys. Lett. 100 103506 |
[21] | Heng H and Wang R 2016 Chin. Phys. Lett. 33 084202 |
[22] | Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, and Padilla W J 2008 Opt. Express 16 7181 |
[23] | Zhu Z X, Zhou J, Li Y G, Qi X Y, Wang Y X, and Wen Y Y 2023 Mater. & Des. 229 111910 |
[24] | Zhou J, Li Y G, Liu S T, Zhang Y C, Wang P, and Sui S C 2022 Compos. Commun. 29 101016 |
[25] | Adams R D and Bacon D G C 1973 J. Compos. Mater. 7 402 |
[26] | Morioka K and Tomita Y 2000 Mater. Charact. 45 125 |
[27] | Wang L, Hu C D, Wu X X, Xia Z Z L, and Wen W J 2017 Appl. Phys. A 123 651 |
[28] | Zhou J, Li Y G, Zhang M C, Xu E Y, and Yang T 2021 Mater. Today Commun. 26 101960 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|