Chin. Phys. Lett.  2023, Vol. 40 Issue (6): 067801    DOI: 10.1088/0256-307X/40/6/067801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Optical Tunable Moiré Excitons in Twisted Hexagonal GaTe Bilayers
Jinsen Han1,2, Kang Lai1,2, Xiaoxiang Yu1,2, Jiahao Chen1,2, Hongli Guo3*, and Jiayu Dai1,2*
1Department of Physics, National University of Defense Technology, Changsha 410073, China
2Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
3Department of Physics and Astronomy, California State University, Northridge, CA 91330-8268, USA
Cite this article:   
Jinsen Han, Kang Lai, Xiaoxiang Yu et al  2023 Chin. Phys. Lett. 40 067801
Download: PDF(16524KB)   PDF(mobile)(16552KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Optical fine-tunable layer-hybridized Moiré excitons are highly in demand for emerging many-body states in two-dimensional semiconductors. We report naturally confined layer-hybridized bright Moiré excitons with long lifetimes in twisted hexagonal GaTe bilayers, using ab initio many-body perturbation theory and the Bethe–Salpeter equation. Due to the hybridization of electrons and holes between layers, which enhances the brightness of excitons, the twisted bilayer system becomes attractive for optical applications. We find that in both R and H-type stacking Moiré superlattices, more than 200 meV lateral quantum confinements occur on exciton energies, which results in two scenarios: (1) The ground state bright excitons $\mathrm{X}_\mathrm{A}$ are found to be trapped at two high-symmetry points, with opposite electric dipoles in the R-stacking Moiré supercell, forming a honeycomb superlattice of nearest-neighbor dipolar attraction. (2) For H-stacking case, the $\mathrm{X}_\mathrm{A}$ is found to be trapped at only one high-symmetry point exhibiting a triangular superlattice. Our results suggest that twisted h-GaTe bilayer is one of the promising systems for optical fine-tunable excitonic devices and provide an ideal platform for realizing strong correlated Bose–Hubbard physics.
Received: 05 April 2023      Editors' Suggestion Published: 11 May 2023
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  42.70.Qs (Photonic bandgap materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/6/067801       OR      https://cpl.iphy.ac.cn/Y2023/V40/I6/067801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jinsen Han
Kang Lai
Xiaoxiang Yu
Jiahao Chen
Hongli Guo
and Jiayu Dai
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, and Strano M S 2012 Nat. Nanotechnol. 7 699
[4] Mak K F, Lee C, Hone J, Shan J, and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[5] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, and Wang F 2010 Nano Lett. 10 1271
[6] Ren Q D, Lai K, Chen J H, Yu X X, and Dai J Y 2023 Chin. Phys. B 32 027201
[7] Molle A 2016 ECS Trans. 75 163
[8] Tao W, Kong N, Ji X, Zhang Y, Sharma A, Ouyang J, Qi B, Wang J, Xie N, Kang C, Zhang H, Farokhzad O C, and Kim J S 2019 Chem. Soc. Rev. 48 2891
[9] Huang Z Y, Liu H T, Hu R, Qiao H, Wang H D, Liu Y D, Qi X, and Zhang H 2020 Nano Today 35 100906
[10] Cao Y, Fatemi V, Demir A et al. 2018 Nature 556 80
[11] Xie M and MacDonald A H 2020 Phys. Rev. Lett. 124 097601
[12] Yuan N F Q and Fu L 2018 Phys. Rev. B 98 045103
[13] Shen C, Chu Y, Wu Q et al. 2020 Nat. Phys. 16 520
[14] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43
[15] Xu C K and Balents L 2018 Phys. Rev. Lett. 121 087001
[16] Liu C C, Zhang L D, Chen W Q, and Yang F 2018 Phys. Rev. Lett. 121 217001
[17] Li S Y, Zhang Y, Ren Y N, Liu J, Dai X, and He L 2020 Phys. Rev. B 102 121406
[18] Liu J p, Ma Z, Gao J H, and Dai X 2019 Phys. Rev. X 9 031021
[19] Liu J P, Liu J W, and Dai X 2019 Phys. Rev. B 99 155415
[20] Lu C, Zhang Y Y, Zhang Y, Zhang M, Liu C C, Wang Y, Gu Z C, Chen W Q, and Yang F 2022 Phys. Rev. B 106 024518
[21] Zhang N, Surrente A, Baranowski M, Maude D K, Gant P, Castellanos-Gomez A, and Plochocka P 2018 Nano Lett. 18 7651
[22] Tran K, Moody G, Wu F et al. 2019 Nature 567 71
[23] Jin C H, Regan E C, Yan A M et al. 2019 Nature 567 76
[24] Naik M H, Regan E C, Zhang Z et al. 2022 Nature 609 52
[25] Wu F C, Lovorn T, and MacDonald A H 2017 Phys. Rev. Lett. 118 147401
[26] Kiemle J, Sigger F, Lorke M, Miller B, Watanabe K, Taniguchi T, Holleitner A, and Wurstbauer U 2020 Phys. Rev. B 101 121404
[27] Wang Z F, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J, and Mak K F 2019 Nature 574 76
[28] Guo H L, Zhang X, and Lu G 2022 Sci. Adv. 8 eabp9757
[29] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, and Xu X 2019 Nature 567 66
[30] Jin C H, Regan E C, Wang D Q et al. 2019 Nat. Phys. 15 1140
[31] Brotons-Gisbert M, Baek H, Molina-Sánchez A, Campbell A, Scerri E, White D, Watanabe K, Taniguchi T, Bonato C, and Gerardot B D 2020 Nat. Mater. 19 630
[32] Tang Y H, Gu J, Liu S, Watanabe K, Taniguchi T, Hone J, Mak K F, and Shan J 2021 Nat. Nanotechnol. 16 52
[33] Lai K, Ju S L, Zhu H E et al. 2022 Commun. Phys. 5 143
[34] Song C Y, Fan F R, Xuan N N, Huang S Y, Zhang G W, Wang C, Sun Z Z, Wu H, and Yan H G 2018 ACS Appl. Mater. & Interfaces 10 3994
[35] Segura A, Pomer F, Cantarero A, Krause W, and Chevy A 1984 Phys. Rev. B 29 5708
[36] Poncé S, Li W, Reichardt S, and Giustino F 2020 Rep. Prog. Phys. 83 036501
[37] Bandurin D A, Tyurnina A V, Yu G L et al. 2017 Nat. Nanotechnol. 12 223
[38] Lu X B, Li X Q, and Yang L 2019 Phys. Rev. B 100 155416
[39] Yu H Y, Liu G B, and Yao W 2018 2D Mater. 5 035021
[40] Yu H Y, Liu G B, Tang J, Xu X, and Yao W 2017 Sci. Adv. 3 e1701696
[41] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[42] Giannozzi P, Baroni S, Bonini N et al. 2009 J. Phys.: Condens. Matter 21 395502
[43] Giannozzi P, Andreussi O, Brumme T et al. 2017 J. Phys.: Condens. Matter 29 465901
[44] Hamann D R 2013 Phys. Rev. B 88 085117
[45] Scherpelz P, Govoni M, Hamada I, and Galli G 2016 J. Chem. Theory Comput. 12 3523
[46] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[47] Becke A D 1988 Phys. Rev. A 38 3098
[48] Dion M, Rydberg H, Schröder E, Langreth D C, and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
[49] Thonhauser T, Cooper V R, Li S, Puzder A, Hyldgaard P, and Langreth D C 2007 Phys. Rev. B 76 125112
[50] Langreth D C, Lundqvist B I, Chakarova-Käck S D, Cooper V R, Dion M, Hyldgaard P, Kelkkanen A, Kleis J, Kong L, Li S, Moses P G, Murray E, Puzder A, Rydberg H, Schröder E, and Thonhauser T 2009 J. Phys.: Condens. Matter 21 084203
[51] Klimeš J, Bowler D R, and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201
[52] Thonhauser T, Zuluaga S, Arter C A, Berland K, Schröder E, and Hyldgaard P 2015 Phys. Rev. Lett. 115 136402
[53] Berland K, Cooper V R, Lee K, Schröder E, Thonhauser T, Hyldgaard P, and Lundqvist B I 2015 Rep. Prog. Phys. 78 066501
[54] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[55] Hedin L 1965 Phys. Rev. 139 A796
[56] Aryasetiawan F and Gunnarsson O 1998 Rep. Prog. Phys. 61 237
[57] Hanke W and Sham L J 1979 Phys. Rev. Lett. 43 387
[58] Marini A, Hogan C, Grüning M, and Varsano D 2009 Comput. Phys. Commun. 180 1392
[59] Sangalli D, Ferretti A, Miranda H, Attaccalite C, Marri I, Cannuccia E, Melo P, Marsili M, Paleari F, Marrazzo A, Prandini G, Bonfà P, Atambo M O, Affinito F, Palummo M, Molina-Sánchez A, Hogan C, Grüning M, Varsano D, and Marini A 2019 J. Phys.: Condens. Matter 31 325902
[60] Ismail-Beigi S 2006 Phys. Rev. B 73 233103
[61] Rozzi C A, Varsano D, Marini A, Gross E K U, and Rubio A 2006 Phys. Rev. B 73 205119
[62] Bennett M and Inkson J C 1977 J. Phys. C 10 987
[63] Inkson J C and Bennett M 1978 J. Phys. C 11 2017
[64] Guo H L, Zhang X, and Lu G 2021 Proc. Natl. Acad. Sci. USA 118 e2105468118
[65] Chen H Y, Jhalani V A, Palummo M, and Bernardi M 2019 Phys. Rev. B 100 075135
Related articles from Frontiers Journals
[1] Zhe Shen and Xin-Yu Huang. Optical Pulling Force in Non-Paraxial Bessel Tractor Beam Generated with Polarization-Insensitive Metasurface[J]. Chin. Phys. Lett., 2023, 40(5): 067801
[2] Bokun Lyu, Haojie Li, Qianwen Jia, Guoxia Yang, Fengzhao Cao, Dahe Liu, and Jinwei Shi. Moiré Metasurface with Triple-Band Near-Perfect Chirality[J]. Chin. Phys. Lett., 2023, 40(5): 067801
[3] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 067801
[4] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 067801
[5] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 067801
[6] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 067801
[7] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 067801
[8] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 067801
[9] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 067801
[10] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 067801
[11] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 067801
[12] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 067801
[13] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 067801
[14] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 067801
[15] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 067801
Viewed
Full text


Abstract