Chin. Phys. Lett.  2023, Vol. 40 Issue (6): 067402    DOI: 10.1088/0256-307X/40/6/067402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Hydrothermally Obtaining Superconductor Single Crystal of FeSe$_{0.2}$Te$_{0.8}$ without Interstitial Fe
Sheng Ma1,2†, Shanshan Yan3†, Jiali Liu1,2, Yizhe Wang3, Yuhang Zhang1,2, Zhen Zhao1,2, Zouyouwei Lu1,2, Dong Li1, Yue Liu1,2, Jihu Lu1,2, Hua Zhang1,2,4, Haitao Yang1,2,5, Fang Zhou1,2,4, Zian, Li3*, Xiaoli Dong1,2,4*, and Zhongxian Zhao1,2,4
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3School of Physical Science and Technology, Guangxi University, Nanning 530004, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
5CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Sheng Ma, Shanshan Yan, Jiali Liu et al  2023 Chin. Phys. Lett. 40 067402
Download: PDF(3525KB)   PDF(mobile)(3557KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a hydrothermal route to remove interstitial excess Fe in non-superconducting iron chalcogenide Fe$_{1+\delta}$Se$_{1-x}$Te$_{x}$ single crystals. The extra-Fe-free ($\delta \sim 0$) FeSe$_{0.2}$Te$_{0.8}$ single crystal thus obtained shows bulk superconductivity at $T_{\rm c} \sim 13.8$ K, which is about 2 K higher than the FeSe$_{0.2}$Te$_{0.8}$ sample obtained by usual post-annealing process. The upper critical field $\mu_{0}H_{\rm c2}$ is estimated to be $\sim$ $42.5$ T, similar to the annealed FeSe$_{0.2}$Te$_{0.8}$. It is surprising to find that the hydrothermal FeSe$_{0.2}$Te$_{0.8}$ exhibits a remarkably small isothermal magnetization hysteresis loop at $T = 3$ K. This yields an extremely low critical current density $J_{\rm c} \sim 1.1\times 10^{2}$ A$\cdot$cm$^{-2}$ (over 100 times smaller than the annealed FeSe$_{0.2}$Te$_{0.8}$) and indicates more free vortices in the hydrothermal FeSe$_{0.2}$Te$_{0.8}$.
Received: 15 April 2023      Editors' Suggestion Published: 23 May 2023
PACS:  74.25.-q (Properties of superconductors)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
  74.25.Sv (Critical currents)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/6/067402       OR      https://cpl.iphy.ac.cn/Y2023/V40/I6/067402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sheng Ma
Shanshan Yan
Jiali Liu
Yizhe Wang
Yuhang Zhang
Zhen Zhao
Zouyouwei Lu
Dong Li
Yue Liu
Jihu Lu
Hua Zhang
Haitao Yang
Fang Zhou
Zian
Li
Xiaoli Dong
and Zhongxian Zhao
[1] Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L, and Mao Z Q 2008 Phys. Rev. B 78 224503
[2] Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H, and Pan S H 2015 Nat. Phys. 11 543
[3] Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, and Gao H J 2018 Science 362 333
[4] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, and Shin S 2018 Science 360 182
[5] Zhao H, Li H, Dong L, Xu B, Schneeloch J, Zhong R, Fang M, Gu G, Harter J, Wilson S D, Wang Z, and Zeljkovic I 2021 Nat. Phys. 17 903
[6] Hosono H, Yamamoto A, Hiramatsu H, and Ma Y 2018 Mater. Today 21 278
[7] Si W D, Han S J, Shi X Y, Ehrlich S N, Jaroszynski J, Goyal A, and Li Q 2013 Nat. Commun. 4 1347
[8] Liu X, Wei S, Shi Y, Liu F, Zhou C, Li Q, Li Y, Liu L, Shi Z, Ren L, Xu Y, Duan P, Yang Z, Ge J, Qi Y, Song Y, Liu H, Zhang Z, and Qin J 2022 Supercond. Sci. Technol. 35 10LT01
[9] Lei H C, Hu R W, Choi E S, Warren J B, and Petrovic C 2010 Phys. Rev. B 81 094518
[10] Bendele M, Babkevich P, Katrych S, Gvasaliya S N, Pomjakushina E, Conder K, Roessli B, Boothroyd A T, Khasanov R, and Keller H 2010 Phys. Rev. B 82 212504
[11] Hu H F, Zuo J M, Wen J S, Xu Z J, Lin Z W, Li Q, Gu G D, Park W K, and Greene L H 2011 New J. Phys. 13 053031
[12] Okazaki H, Watanabe T, Yamaguchi T, Kawasaki Y, Deguchi K, Demura S, Ozaki T, Denholme S J, Mizuguchi Y, Takeya H, and Takano Y 2012 J. Phys. Soc. Jpn. 81 113707
[13] Dong L Y, Zhao H, Zeljkovic I, Wilson S D, and Harter J W 2019 Phys. Rev. Mater. 3 114801
[14] Sun Y, Shi Z, and Tamegai T 2019 Supercond. Sci. Technol. 32 103001
[15] Eguchi R, Senda M, Uesugi E, Goto H, Fujiwara A, Imai Y, Kimura S, Noji T, Koike Y, and Kubozono Y 2020 Mater. Res. Express 7 036001
[16] Sun Y, Pan Y, Zhou N, Xing X, Shi Z, Wang J, Zhu Z, Sugimoto A, Ekino T, Tamegai T, and Kitano H 2021 Phys. Rev. B 103 224506
[17] Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M, Qian B, Vehstedt E K, Yang J, Pham H M, Spinu L, and Mao Z Q 2009 Phys. Rev. Lett. 102 247001
[18] Liu T J, Ke X, Qian B, Hu J, Fobes D, Vehstedt E K, Pham H, Yang J H, Fang M H, Spinu L, Schiffer P, Liu Y, and Mao Z Q 2009 Phys. Rev. B 80 174509
[19] Sales B C, Sefat A S, Mcguire M A, Jin R Y, Mandrus D, and Mozharivskyj Y 2009 Phys. Rev. B 79 094521
[20] Komiya S, Hanawa M, Tsukada I, and Maeda A 2013 J. Phys. Soc. Jpn. 82 064710
[21] Sun Y, Tsuchiya Y, Yamada T, Taen T, Pyon S, Shi Z, and Tamegai T 2013 J. Phys. Soc. Jpn. 82 093705
[22] Dong C H, Wang H D, Li Z J, Chen J, Yuan H Q, and Fang M H 2011 Phys. Rev. B 84 224506
[23] Hu J, Wang G C, Qian B, and Mao Z Q 2012 Supercond. Sci. Technol. 25 084011
[24] Kawasaki Y, Deguchi K, Demura S, Watanabe T, Okazaki H, Ozaki T, Yamaguchi T, Takeya H, and Takano Y 2012 Solid State Commun. 152 1135
[25] Koshika Y, Usui T, Adachi S, Watanabe T, Sakano K, Simayi S, and Yoshizawa M 2013 J. Phys. Soc. Jpn. 82 023703
[26] Friederichs G M, Wörsching M P B, and Johrendt D 2015 Supercond. Sci. Technol. 28 095005
[27] Otsuka T, Hagisawa S, Koshika Y, Adachi S, Usui T, Sasaki N, Sasaki S, Yamaguchi S, Nakanishi Y, Yoshizawa M, Kimura S, and Watanabe T 2019 Phys. Rev. B 99 184505
[28] Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Prokeš K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A, and Broholm C 2010 Nat. Mater. 9 718
[29] Liu Y, Kremer R K, and Lin C T 2010 Europhys. Lett. 92 57004
[30] Hu J, Liu T J, Qian B, and Mao Z Q 2013 Phys. Rev. B 88 094505
[31] Liu L, Mikami T, Takahashi M, Ishida S, Kakeshita T, Okazaki K, Fujimori A, and Uchida S 2015 Phys. Rev. B 91 134502
[32] Yuan D N, Huang Y L, Ni S L, Zhou H X, Mao Y Y, Hu W, Yuan J, Jin K, Zhang G M, Dong X L, and Zhou F 2016 Chin. Phys. B 25 077404
[33] Ni S L, Hu W, Shen P P, Wei Z G, Liu S B, Li D, Yuan J, Yu L, Jin K, Zhou F, Dong X L, and Zhao Z X 2019 Chin. Phys. B 28 127401
[34] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, and Feng D L 2018 Phys. Rev. X 8 041056
[35] Li G, Zhu S, Fan P, Cao L, and Gao H J 2022 Chin. Phys. B 31 080301
[36] De Mendonça B S, Manesco A L R, Sandler N, and Dias da Silva L G G V 2022 Phys. Rev. B 107 184509
[37] Gurevich A 2003 Phys. Rev. B 67 184515
[38] Bean C P 1964 Rev. Mod. Phys. 36 31
[39] Gyorgy E M, van Dover R B, Jackson K A, Schneemeyer L F, and Waszczak J V 1989 Appl. Phys. Lett. 55 283
Related articles from Frontiers Journals
[1] X. He, C. L. Zhang, Z. W. Li, S. J. Zhang, B. S. Min, J. Zhang, K. Lu, J. F. Zhao, L. C. Shi, Y. Peng, X. C. Wang, S. M. Feng, J. Song, L. H. Wang, V. B. Prakapenka, S. Chariton, H. Z. Liu, and C. Q. Jin. Superconductivity Observed in Tantalum Polyhydride at High Pressure[J]. Chin. Phys. Lett., 2023, 40(5): 067402
[2] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 067402
[3] Chunsheng Gong, Shangjie Tian, Zhijun Tu, Qiangwei Yin, Yang Fu, Ruitao Luo, and Hechang Lei. Superconductivity in Kagome Metal YRu$_{3}$Si$_{2}$ with Strong Electron Correlations[J]. Chin. Phys. Lett., 2022, 39(8): 067402
[4] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 067402
[5] Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, and Yanfeng Guo. Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations[J]. Chin. Phys. Lett., 2022, 39(6): 067402
[6] Yutao Jiang, Ze Yu, Yuxin Wang, Tenglong Lu, Sheng Meng, Kun Jiang, and Miao Liu. Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation[J]. Chin. Phys. Lett., 2022, 39(4): 067402
[7] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 067402
[8] Yuxin Yang, Wenhui Fan, Qinghua Zhang, Zhaoxu Chen, Xu Chen, Tianping Ying, Xianxin Wu, Xiaofan Yang, Fanqi Meng, Gang Li, Shiyan Li, Lin Gu, Tian Qian, Andreas P. Schnyder, Jian-gang Guo, and Xiaolong Chen. Discovery of Two Families of VSb-Based Compounds with V-Kagome Lattice[J]. Chin. Phys. Lett., 2021, 38(12): 067402
[9] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 067402
[10] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 067402
[11] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 067402
[12] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 067402
[13] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 067402
[14] Gaoning Zhang, Xianbiao Shi, Xiaolei Liu, Wei Xia, Hao Su, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, Weiwei Zhao, and Yanfeng Guo. de Haas–van Alphen Quantum Oscillations in BaSn$_{3}$ Superconductor with Multiple Dirac Fermions[J]. Chin. Phys. Lett., 2020, 37(8): 067402
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 067402
Viewed
Full text


Abstract