Chin. Phys. Lett.  2023, Vol. 40 Issue (6): 067502    DOI: 10.1088/0256-307X/40/6/067502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Possible Room-Temperature Ferromagnetic Semiconductors
Jing-Yang You1*, Xue-Juan Dong2, Bo Gu3*, and Gang Su3*
1Department of Physics, Faculty of Science, National University of Singapore, 117551, Singapore
2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3Kavli Institute for Theoretical Sciences, and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Jing-Yang You, Xue-Juan Dong, Bo Gu et al  2023 Chin. Phys. Lett. 40 067502
Download: PDF(35826KB)   PDF(mobile)(35842KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetic semiconductors integrate the dual characteristics of magnets and semiconductors. It is difficult to manufacture magnetic semiconductors that function at room temperature. Here, we review a series of our recent theoretical predictions on room-temperature ferromagnetic semiconductors. Since the creation of two-dimensional (2D) magnetic semiconductors in 2017, there have been numerous developments in both experimental and theoretical investigations. By density functional theory calculations and model analysis, we recently predicted several 2D room-temperature magnetic semiconductors, including CrGeSe$_3$ with strain, CrGeTe$_3$/PtSe$_2$ heterostructure, and technetium-based semiconductors (TcSiTe$_3$, TcGeSe$_3$, and TcGeTe$_3$), as well as PdBr$_3$ and PtBr$_3$ with a potential room-temperature quantum anomalous Hall effect. Our findings demonstrated that the Curie temperature of these 2D ferromagnetic semiconductors can be dramatically enhanced by some external fields, such as strain, construction of heterostructure, and electric field. In addition, we proposed appropriate doping conditions for diluted magnetic semiconductors, and predicted the Cr doped GaSb and InSb as possible room-temperature magnetic semiconductors.
Received: 11 April 2023      Review Published: 29 May 2023
PACS:  75.50.-y (Studies of specific magnetic materials)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  75.50.Pp (Magnetic semiconductors)  
  63.20.dk (First-principles theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/6/067502       OR      https://cpl.iphy.ac.cn/Y2023/V40/I6/067502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing-Yang You
Xue-Juan Dong
Bo Gu
and Gang Su
[1] Maekawa S (ed) 2006 Concepts in Spin Electronics (Oxford: Oxford University Press)
[2] Maekawa S, Valenzuela S O, Saitoh E, and Kimura T (eds) 2017 Spin Current (Oxford: Oxford University Press)
[3] Li X X and Yang J L 2016 Natl. Sci. Rev. 3 365
[4] Jin W, Zhang G, Wu H, Yang L, Zhang W, and Chang H 2023 Chin. Phys. Lett. 40 057301
[5] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, and Treger D M 2001 Science 294 1488
[6] Dietl T 2002 Semicond. Sci. Technol. 17 377
[7] Ohno H 1998 Science 281 951
[8] Munekata H, Ohno H, von Molnar S, Segmüller A, Chang L L, and Esaki L 1989 Phys. Rev. Lett. 63 1849
[9] Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y, Yan F, Zhang J, Zhao L, Patané A, Zhang J, Chang H, and Wang K 2022 Chin. Phys. Lett. 39 128501
[10] Furdyna J K 1988 J. Appl. Phys. 64 R29
[11] Satoh I and Kobayashi T 2003 Appl. Surf. Sci. 216 603
[12] Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, and von Molnár S 2011 Nano Lett. 11 2584
[13] Burch K S, Mandrus D, and Park J G 2018 Nature 563 47
[14] Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270
[15] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265
[16] Kennedy D and Norman C 2005 Science 309 75
[17] Zeng Y Z and Huang M C 2004 Chin. Phys. Lett. 21 1632
[18] Peng L, Zhang H W, Wen Q Y, Song Y Q, Su H, and Xiao J Q 2008 Chin. Phys. Lett. 25 1438
[19] Tao Z K, Zhang R, Cui X G, Xiu X Q, Zhang G Y, Xie Z L, Gu S L, Shi Y, and Zheng Y D 2008 Chin. Phys. Lett. 25 1476
[20] Liu J 2014 Natl. Sci. Rev. 1 3
[21] Mašek J, Kudrnovský J, Máca F, Gallagher B L, Campion R P, Gregory D H, and Jungwirth T 2007 Phys. Rev. Lett. 98 067202
[22] Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, and Uemura Y J 2011 Nat. Commun. 2 422
[23] Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J, Wang Y, Ning F L, Maekawa S, Uemura Y J, and Jin C Q 2013 Phys. Rev. B 88 081203
[24] Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Böni P, and Jin C Q 2013 Nat. Commun. 4 1442
[25] Zhao K, Chen B, Zhao G, Yuan Z, Liu Q, Deng Z, Zhu J, and Jin C 2014 Chin. Sci. Bull. 59 2524
[26] Tu N T, Hai P N, Anh L D, and Tanaka M 2016 Appl. Phys. Lett. 108 192401
[27] Goel S, Anh L D, Ohya S, and Tanaka M 2019 Phys. Rev. B 99 014431
[28] Kudrin A V, Danilov Y A, Lesnikov V P, Dorokhin M V, Vikhrova O V, Pavlov D A, Usov Y V, Antonov I N, Kriukov R N, Alaferdov A V, and Sobolev N A 2017 J. Appl. Phys. 122 183901
[29] Tu N T, Hai P N, Anh L D, and Tanaka M 2019 Appl. Phys. Express 12 103004
[30] Guo S L, Man H Y, Wang K, Ding C, Zhao Y, Fu L C, Gu Y L, Zhi G X, Frandsen B A, Cheung S C, Guguchia Z, Yamakawa K, Chen B, Wang H, Deng Z, Jin C Q, Uemura Y J, and Ning F 2019 Phys. Rev. B 99 155201
[31] Abe E, Matsukura F, Yasuda H, Ohno Y, and Ohno H 2000 Physica E 7 981
[32] Ganesan K and Bhat H L 2008 J. Appl. Phys. 103 043701
[33] Hai P N, Anh L D, Mohan S, Tamegai T, Kodzuka M, Ohkubo T, Hono K, and Tanaka M 2012 Appl. Phys. Lett. 101 182403
[34] Schallenberg T and Munekata H 2006 Appl. Phys. Lett. 89 042507
[35] Pham Y T H, Liu M, Jimenez V O, Yu Z, Kalappattil V, Zhang F, Wang K, Williams T, Terrones M, and Phan M H 2020 Adv. Mater. 32 2003607
[36] Zhang F, Zheng B, Sebastian A, Olson D H, Liu M, Fujisawa K, Pham Y T H, Jimenez V O, Kalappattil V, Miao L, Zhang T, Pendurthi R, Lei Y, Elías A L, Wang Y, Alem N, Hopkins P E, Das S, Crespi V H, Phan M H, and Terrones M 2020 Adv. Sci. 7 2001174
[37] Zhang G J, Wu H, Zhang L, Zhang S F, Yang L, Gao P F, Wen X, Jin W, Guo F, Xie Y M, Li H D, Tao B R, Zhang W F, and Chang H X 2022 Adv. Sci. 9 2103173
[38] Yang L, Wu H, Zhang L, Zhang G, Li H, Jin W, Zhang W, and Chang H 2021 ACS Appl. Mater. & Interfaces 13 31880
[39] Gu B and Maekawa S 2016 Phys. Rev. B 94 155202
[40] You J Y, Gu B, Maekawa S, and Su G 2020 Phys. Rev. B 102 094432
[41] Han W, Chen B J, Gu B, Zhao G Q, Yu S, Wang X C, Liu Q Q, Deng Z, Li W M, Zhao J F, Cao L P, Peng Y, Shen X, Zhu X H, Yu R C, Maekawa S, Uemura Y J, and Jin C Q 2019 Sci. Rep. 9 7490
[42] You J Y 2023 iScience 26 106312
[43] Guinea F, Katsnelson M I, and Geim A K 2010 Nat. Phys. 6 30
[44] Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T, and Bolotin K I 2013 Nano Lett. 13 3626
[45] Dong X J, You J Y, Gu B, and Su G 2019 Phys. Rev. Appl. 12 014020
[46] Dong X J, You J Y, Zhang Z, Gu B, and Su G 2020 Phys. Rev. B 102 144443
[47] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[48] Xu C S, Feng J S, Xiang H J, and Bellaiche L 2018 npj Comput. Mater. 4 57
[49] Zhang Z, You J Y, Gu B, and Su G 2021 Phys. Rev. B 104 174433
[50] Han X C, You J Y, Wu S, Li R, Feng Y P, Loh K P, and Zhao X X 2023 J. Am. Chem. Soc. 145 3624
[51] Suzuki Y, Katayama T, Yoshida S, Tanaka K, and Sato K 1992 Phys. Rev. Lett. 68 3355
[52] Bennett W R, Schwarzacher W, and Egelhoff W F 1990 Phys. Rev. Lett. 65 3169
[53] Weller D, Brändle H, and Chappert C 1993 J. Magn. Magn. Mater. 121 461
[54] You J Y, Zhang Z, Dong X J, Gu B, and Su G 2020 Phys. Rev. Res. 2 013002
[55] You J Y, Su G, and Feng Y P 2023 Natl. Sci. Rev. nwad114
[56] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[57] Liu C X, Qi X L, Dai X, Fang Z, and Zhang S C 2008 Phys. Rev. Lett. 101 146802
[58] He K, Wang Y, and Xue Q K 2018 Annu. Rev. Condens. Matter Phys. 9 329
[59] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y, and Wang J 2020 Natl. Sci. Rev. 7 1280
[60] Wu J S, Liu J, and Liu X J 2014 Phys. Rev. Lett. 113 136403
[61] Chang C Z, Zhang J, Liu M, Zhang Z, Feng X, Li K, Wang L L, Chen X, Dai X, Fang Z, Qi X L, Zhang S C, Wang Y, He K, Ma X C, and Xue Q K 2013 Adv. Mater. 25 1065
[62] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, and Xue Q K 2013 Science 340 167
[63] Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W, and Moodera J S 2015 Nat. Mater. 14 473
[64] Ou Y B, Liu C, Jiang G Y, Feng Y, Zhao D Y, Wu W, Wang X X, Li W, Song C, Wang L L, Wang W, Wu W, Wang Y, He K, Ma X C, and Xue Q K 2017 Adv. Mater. 30 1703062
[65] Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M, and Tokura Y 2015 Appl. Phys. Lett. 107 182401
[66] Liu X, Hsu H C, and Liu C X 2013 Phys. Rev. Lett. 111 086802
[67] Huang C, Zhou J, Wu H, Deng K, Jena P, and Kan E 2017 Phys. Rev. B 95 045113
[68] You J Y, Gu B, and Su G 2021 Natl. Sci. Rev. 9 nwab114
[69] He J J, Li X, Lyu P B, and Nachtigall P 2017 Nanoscale 9 2246
[70] Sun Q L and Kioussis N 2018 Phys. Rev. B 97 094408
[71] Zhang Z, You J Y, Ma X Y, Gu B, and Su G 2021 Phys. Rev. B 103 014410
[72] You J Y and Feng Y P 2023 Mater. Today Chem. 30 101566
[73] Zhang H B, Lazo C, Blügel S, Heinze S, and Mokrousov Y 2012 Phys. Rev. Lett. 108 056802
[74] Qiao Z H, Ren W, Chen H, Bellaiche L, Zhang Z Y, MacDonald A H, and Niu Q 2014 Phys. Rev. Lett. 112 116404
[75] You J Y, Chen C, Zhang Z, Sheng X L, Yang S A, and Su G 2019 Phys. Rev. B 100 064408
[76] Wu S C, Shan G, and Yan B 2014 Phys. Rev. Lett. 113 256401
[77] You J Y, Zhang Z, Gu B, and Su G 2019 Phys. Rev. Appl. 12 024063
[78] Wolff U 1989 Phys. Rev. Lett. 62 361
[79] Hatsugai Y 1993 Phys. Rev. Lett. 71 3697
[80] Liu Z, You J Y, Gu B, Maekawa S, and Su G 2023 Phys. Rev. B 107 104407
[81] O'Neill A, Rahman S, Zhang Z, Schoenherr P, Yildirim T, Gu B, Su G, Lu Y, and Seidel J 2023 ACS Nano 17 735
[82] Fernández-Pacheco A, Vedmedenko E, Ummelen F, Mansell R, Petit D, and Cowburn R P 2019 Nat. Mater. 18 679
[83] You J Y, Dong X J, Gu B, and Su G 2021 Phys. Rev. B 103 104403
[84] Sahoo S, Kontos T, Furer J, Hoffmann C, Gräber M, Cottet A, and Schönenberger C 2005 Nat. Phys. 1 99
[85] Laukhin V, Skumryev V, Martí X, Hrabovsky D, Sánchez F, García-Cuenca M V, Ferrater C, Varela M, Lüders U, Bobo J F, and Fontcuberta J 2006 Phys. Rev. Lett. 97 227201
[86] Ohta T, Bostwick A, Seyller T, Horn K, and Rotenberg E 2006 Science 313 951
[87] Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, and Wang F 2009 Nature 459 820
[88] You J Y, Gu B, and Su G 2019 Sci. Rep. 9 20116
[89] Xiao X B, Ye Q, Liu Z F, Wu Q P, Li Y, and Ai G P 2019 Nanoscale Res. Lett. 14 322
[90] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, and Xu X 2016 Nat. Rev. Mater. 1 16055
[91] Liu F C, Zhou J D, Zhu C, and Liu Z 2016 Adv. Funct. Mater. 27 1602404
[92] Lyu H Y, Zhang Z, You J Y, Yan Q B, and Su G 2022 J. Phys. Chem. Lett. 13 11405
[93] Xing W Y, Chen Y Y, Odenthal P M, Zhang X, Yuan W, Su T, Song Q, Wang T Y, Zhong J G, Jia S, Xie X C, Li Y, and Han W 2017 2D Mater. 4 024009
[94] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, and Xu X 2018 Nat. Nanotechnol. 13 544
[95] Jiang S W, Shan J, and Mak K F 2018 Nat. Mater. 17 406
[96] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, and Zhang Z 2018 Nat. Nanotechnol. 13 554
[97] Song T C, Tu M W Y, Carnahan C, Cai X H, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, and Xu X D 2019 Nano Lett. 19 915
[98] Zhang Z, You J Y, Gu B, and Su G 2020 J. Phys. Chem. C 124 19219
[99] Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H, and Xu Y 2019 Sci. Adv. 5 eaaw5685
Related articles from Frontiers Journals
[1] Jia Luo, Jia-Hao Guo, Yun-He Hou, Jun-Lin Wang, Yong-Bing Xu, Yan Zhou, Philip Wing Tat Pong, and Guo-Ping Zhao. Manipulating Skyrmion Motion on a Nanotrack with Varied Material Parameters and Tilted Spin Currents[J]. Chin. Phys. Lett., 2023, 40(9): 067502
[2] Heming Zha, Wei Li, Gaojie Zhang, Wenjing Liu, Liwei Deng, Qi Jiang, Mao Ye, Hao Wu, Haixin Chang, and Shan Qiao. Enhanced Magnetic Interaction between Ga and Fe in Two-Dimensional van der Waals Ferromagnetic Crystal Fe$_{3}$GaTe$_{2}$[J]. Chin. Phys. Lett., 2023, 40(8): 067502
[3] Xiao-Yan Wang, Jun-Fa Lin, Xiang-Yu Zeng, Huan Wang, Xiao-Ping Ma, Yi-Ting Wang, Kun Han, and Tian-Long Xia. Multiple Magnetic Phase Transitions and Critical Behavior in Single-Crystal SmMn$_{2}$Ge$_{2}$[J]. Chin. Phys. Lett., 2023, 40(6): 067502
[4] Wenkai Zhu, Shihong Xie, Hailong Lin, Gaojie Zhang, Hao Wu, Tiangui Hu, Ziao Wang, Xiaomin Zhang, Jiahan Xu, Yujing Wang, Yuanhui Zheng, Faguang Yan, Jing Zhang, Lixia Zhao, Amalia Patanè, Jia Zhang, Haixin Chang, and Kaiyou Wang. Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions[J]. Chin. Phys. Lett., 2022, 39(12): 067502
[5] Lin Feng, Chen-Chen Guo, Xue-Ying Zhang, Hai-Cheng Xuan, Wen-Hong Wang, En-Ke Liu, Guang-Heng Wu. Possible Martensitic Transformation in Heusler Alloy Pt$_{2}$MnSn from First Principles[J]. Chin. Phys. Lett., 2018, 35(3): 067502
[6] KUMAR V., SINHA Anita, SINGH B. P., SINHA A. P., JHA V.. Refractive Index and Electronic Polarizability of Ternary Chalcopyrite Semiconductors[J]. Chin. Phys. Lett., 2015, 32(12): 067502
[7] SI Ping-Zhan, XIAO Xiao-Fei, FENG He, YU Sen-Jiang, GE Hong-Liang . Overcoming Decomposition with Order-Reversed Quenching Obtained by Flash Melting[J]. Chin. Phys. Lett., 2013, 30(7): 067502
[8] Osman Murat Ozkendir**. Chromium Substitution Effect on the Magnetic Structure of Iron Oxides[J]. Chin. Phys. Lett., 2012, 29(5): 067502
[9] ZHOU Tie-Ge,LIU Zhi-Qiang**,ZUO Xu. First-Principles Study of Doped Half-Metallic Spinels: Cu0.5Zn0.5Cr2S4, Cu0.5Cd0.5Cr2S4, Li0.5Zn0.5Cr2O4 and Li0.5Zn0.5Cr2S4[J]. Chin. Phys. Lett., 2012, 29(4): 067502
[10] LIU Chun-Ming**, XIANG Xia, ZHANG Yan, JIANG Yong, ZU Xiao-Tao . Magnetism of a Nitrogen-Implanted TiO2 Single Crystal[J]. Chin. Phys. Lett., 2011, 28(12): 067502
[11] CHEN Hai-Ying, ZHANG Yan, YANG Yun-Bo, CHEN Xue-Gang, LIU Shun-Quan, WANG Chang-Sheng, YANG Ying-Chang, YANG Jin-Bo, ** . Magnetostrictions and Magnetic Properties of Nd-Fe-B and SrFe12O19[J]. Chin. Phys. Lett., 2011, 28(7): 067502
[12] LI Yong-Feng, LIU Gui-Bin, SHI Li-Jie, LIU Bang-Gui. Fe-Vacancy-Induced Ferromagnetism in Tetragonal FeSe Thin Films[J]. Chin. Phys. Lett., 2009, 26(12): 067502
[13] ZHOU Guang-Hong, WANG Yin-Gang, QI Xian-Jin. Thermal Stability of CoFe/Cu/CoFe/IrMn Top Spin Valve[J]. Chin. Phys. Lett., 2009, 26(3): 067502
[14] XUE De-Sheng, LI Fa-Shen, FAN Xiao-Long, WEN Fu-Sheng. Bianisotropy Picture of Higher Permeability at Higher Frequencies[J]. Chin. Phys. Lett., 2008, 25(11): 067502
[15] GAO Tian, CAO Shi-Xun, ZHANG Jin-Cang, YU Li-Ming, KANG Bao-Juan, YUAN Shu-Juan,. Nano-sized Domain Wall Pinning Effects in Dilute Cu-Doped Perovskite LaMn1-xCuxO3 Manganites[J]. Chin. Phys. Lett., 2008, 25(9): 067502
Viewed
Full text


Abstract