CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Highly Anisotropic Magnetism and Nearly Isotropic Magnetocaloric Effect in Mn$_{3}$Sn$_{2}$ Single Crystals |
Jianli Bai1,2, Qingxin Dong1,2, Libo Zhang1,2, Qiaoyu Liu1,2, Jingwen Cheng1,2, Pinyu Liu1,2, Cundong Li1,2, Yingrui Sun1,2, Yu Huang1,2, Zhian Ren1,2, and Genfu Chen1,2,3* |
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Jianli Bai, Qingxin Dong, Libo Zhang et al 2023 Chin. Phys. Lett. 40 127501 |
|
|
Abstract Mn$_{3}$Sn$_{2}$ has been proposed as an ideal material for magnetic refrigeration. It undergoes two successive ferromagnetic transitions ($T_{\rm C1} = 262$ K and $T_{\rm C2} = 227$ K) and one antiferromagnetic transition ($T_{\rm N} = 192$ K). Herein we report, for the first time, the preparation of single crystals of Mn$_{3}$Sn$_{2}$ from Bi flux. The resultant anisotropic magnetic properties and magnetocaloric effect are investigated along the three principal crystallographic directions of the crystal. Significant anisotropy of magnetic susceptibility and multiple field-induced metamagnetic transitions were found at low fields, whereas the magnetocaloric effect was found to be almost isotropic and larger than that of the polycrystalline one. The maximum magnetic entropy change amounts to $-\Delta S_{\rm M} = 4.01$ J$\cdot$kg$^{-1}\cdot$K$^{-1}$ near $T_{\rm C1}$ under a magnetic field change of $\mu_{0}\Delta H = 5$ T along the $c$-axis, with the corresponding refrigerant capacity of 1750 mJ$\cdot$cm$^{-3}$. Combined with a much wider cooling temperature span ($\sim$ $80$ K), our results demonstrate Mn$_{3}$Sn$_{2}$ single crystal to be an attractive candidate working material for active magnetic refrigeration at low temperatures.
|
|
Received: 08 October 2023
Published: 20 December 2023
|
|
|
|
|
|
[1] | Franco V, Blázquez J S, Ipus J J, Law J Y, Moreno-Ramírez L M, and Conde A 2018 Prog. Mater. Sci. 93 112 |
[2] | Gschneidner K A, J, and Pecharsky V K 2000 Annu. Rev. Mater. Sci. 30 387 |
[3] | Gschneidner Jr K A, Pecharsky V K, and Tsokol A O 2005 Rep. Prog. Phys. 68 1479 |
[4] | Bohigas X, Molins E, Roig A, Tejada J, and Zhang X X 2000 IEEE Trans. Magn. 36 538 |
[5] | Hirano N, Nagaya S, Takahashi M, Kuriyama T, Ito K, and Nomura S 2002 AIP Conf. Proc. 613 1027 |
[6] | Tegus O, Brück E, Buschow K H J, and de Boer F R 2002 Nature 415 150 |
[7] | Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302 |
[8] | Hu F X, Shen B G, and Sun J R 2000 Appl. Phys. Lett. 76 3460 |
[9] | Hu F X, Sun J R, Wu G H, and Shen B G 2001 J. Appl. Phys. 90 5216 |
[10] | Hashimoto T, Kuzuhara T, Sahashi M, Inomata K, Tomokiyo A, and Yayama H 1987 J. Appl. Phys. 62 3873 |
[11] | Yue M, Zhang J X, Zeng H, Chen H L, and Liu X B 2007 J. Appl. Phys. 101 09C520 |
[12] | Tamari N, Tanaka T, Tanaka K, Kondoh I, Kawahara M, and Tokita M 1995 J. Ceram. Soc. Jpn. 103 740 |
[13] | Reid C E, Barclay J A, Hall J L, and Sarangi S 1994 J. Alloys Compd. 207–208 366 |
[14] | Mazet T, Ihou-Mouko H, and Malaman B 2006 Appl. Phys. Lett. 89 022503 |
[15] | Recour Q, Mazet T, and Malaman B 2009 J. Appl. Phys. 105 033905 |
[16] | Zeng R, Lu L, Li W X et al. 2009 J. Appl. Phys. 105 07A935 |
[17] | Zhao X G, Lee E H, Hsieh C C, Shih C W, Chang W C, and Zhang Z D 2012 J. Appl. Phys. 111 07A912 |
[18] | Stange M, Fjellvåg H, Furuseth S, and Hauback B C 1997 J. Alloys Compd. 259 140 |
[19] | Elding-Pontén M, Stenberg L, Larsson A K, Lidin S, and Ståhl K 1997 J. Solid State Chem. 129 231 |
[20] | Hering P, Friese K, Voigt J, Persson J, Aliouane N, Grzechnik A, Senyshyn A, and Brückel T 2015 Chem. Mater. 27 7128 |
[21] | Phan M H and Yu S C 2007 J. Magn. Magn. Mater. 308 325 |
[22] | Kuz'min M D and Tishin A M 1991 J. Phys. D 24 2039 |
[23] | Luo X H, Ren W J, and Zhang Z D 2018 J. Magn. Magn. Mater. 445 37 |
[24] | dos Reis R D, Silva L M D, Santos A O D, Medina A M N, Cardoso L P, and Gandra F C G 2014 J. Alloys Compd. 582 461 |
[25] | Balli M, Jandl S, Fournier P, Vermette J, and Dimitrov D Z 2018 Phys. Rev. B 98 184414 |
[26] | Balli M, Jandl S, Fournier P, and Gospodinov M M 2014 Appl. Phys. Lett. 104 032402 |
[27] | Nikitin S A, Skokov K P, Koshkid'ko Y S, Pastushenkov Y G, and Ivanova T I 2010 Phys. Rev. Lett. 105 137205 |
[28] | Jin J L, Zhang X Q, Li G K, Cheng Z H, Zheng L, and Lu Y 2011 Phys. Rev. B 83 184431 |
[29] | Balli M, Jandl S, Fournier P, and Dimitrov D Z 2016 Appl. Phys. Lett. 108 102401 |
[30] | Liu Y and Petrovic C 2018 Phys. Rev. B 97 174418 |
[31] | Mazet T, Recour Q, and Malaman B 2010 Phys. Rev. B 81 174427 |
[32] | Pecharsky V K and Gschneidner K A 1999 J. Appl. Phys. 86 565 |
[33] | Tolstorebrov I, Eikevik T M, and Bantle M 2016 Int. J. Refrig. 63 37 |
[34] | Howlett R J and Littlewood J R 2022 Smart and Sustainable Technology for Resilient Cities and Communities—An Overview. In: Howlett R J, Jain L C, Littlewood J R, and Balas M M (eds) Smart and Sustainable Technology for Resilient Cities and Communities. Advances in Sustainability Science and Technology (Singapore: Springer) pp 1–7 |
[35] | He Y J, Jiang Y Y, Fan Y C, Chen G M, and Tang L M 2020 Renewable Energy 157 204 |
[36] | Yamaguchi H, Niu X D, Sekimoto K, and Nekså P 2011 Int. J. Refrig. 34 466 |
[37] | Wang H D, Song Y L, and Cao F 2020 Int. J. Refrig. 119 1 |
[38] | Li D W, Bai T, and Yu J L 2023 Int. J. Refrig. 145 425 |
[39] | Bani Issa A A M, Pergantis E N, Brehm J K, Groll E A, and Ziviani D 2022 International Refrigeration and Air Conditioning Conference paper 2424 (Purdue Libraries, Purdue University) |
[40] | Tang F and Wan X G 2022 Phys. Rev. B 105 155156 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|