Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 127402    DOI: 10.1088/0256-307X/40/12/127402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ground State and Its Topological Properties of Three-Dimensional Spin-Orbit Coupled Degenerate Fermi Gases
Long Xiong1†, Ming Gong2,3†, Zhao-Xiang Fang4*, and Rui Sun5*
1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2Key Lab of Quantum Information of Chinese Academy of Sciences, School of Physics, University of Science and Technology of China, Hefei 230026, China
3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
4School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
5College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Cite this article:   
Long Xiong, Ming Gong, Zhao-Xiang Fang et al  2023 Chin. Phys. Lett. 40 127402
Download: PDF(2402KB)   PDF(mobile)(2428KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Three-dimensional (3D) degenerate Fermi gases in the presence of spin-orbit coupling, inducing various kinds of physical findings and phenomena, have attracted tremendous attention in these years. We investigate the 3D spin-orbit coupled degenerate Fermi gases in theory and first present the analytic expression of their ground state. Our study provides an innovative perspective into understanding of the topological properties of 3D unconventional superconductors, and describes the topological phase transitions in trivial and topological phase areas. Further, such a system is provided with a richer set of Cooper pairings than traditional superconductors. The dual Cooper pairs with same spin directions emerge and exhibit peculiar behaviors, leading to topological phase transitions. Our study and discussion can be generalized to some other types of unconventional superconductors and areas of optical lattices.
Received: 31 October 2023      Published: 21 December 2023
PACS:  74.20.Fg (BCS theory and its development)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  03.75.Ss (Degenerate Fermi gases)  
  74.20.-z (Theories and models of superconducting state)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/127402       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/127402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Long Xiong
Ming Gong
Zhao-Xiang Fang
and Rui Sun
[1] Bloch I, Dalibard J, and Nascimbene S 2012 Nat. Phys. 8 267
[2] Georgescu I M, Ashhab S, and Nori F 2014 Rev. Mod. Phys. 86 153
[3] Goldman N, Budich J C, and Zoller P 2016 Nat. Phys. 12 639
[4] Gross C and Bloch I 2017 Science 357 995
[5] Norman M R 2011 Science 332 196
[6] Stewart G R 2017 Adv. Phys. 66 75
[7] Kinnunen J J, Baarsma J E, Martikainen J P, and Törmä P 2018 Rep. Prog. Phys. 81 046401
[8] Anderson M H, Ensher J R, Matthews M R, Wieman C E, and Cornell E A 1995 Science 269 198
[9] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D, and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[10] Bradley C C, Sackett C, Tollett J, and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[11] Jaksch D, Bruder C, Cirac J I, Gardiner C W, and Zoller P 1998 Phys. Rev. Lett. 81 3108
[12] Gong M, Tewari S, and Zhang C 2011 Phys. Rev. Lett. 107 195303
[13] Gong M, Chen G, Jia S, and Zhang C 2012 Phys. Rev. Lett. 109 105302
[14] Zhai H 2015 Rep. Prog. Phys. 78 026001
[15] Galitski V and Spielman I B 2013 Nature 494 49
[16] Goldman N, Juzeliunas G, Ohberg P, and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[17] Einstein A 1925 Quantentheorie des einatomigen idealen Gases (New York: Wiley) p 245
[18] Weber T, Herbig J, Mark M, Nagerl H C, and Grimm R 2003 Science 299 232
[19] Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A, and Inguscio M 2001 Science 294 1320
[20] Qiu X Z, Deng T S, Guo G C, and Yi W 2018 Phys. Rev. A 98 021601
[21] Wang K K, Qiu X Z, Xiao L, Zhan X, Bian Z H, Yi W, and Xue P 2019 Phys. Rev. Lett. 122 020501
[22] Wang K K, Qiu X Z, Xiao L, Zhan X, Bian Z, Sanders B C, Yi W, and Xue P 2019 Nat. Commun. 10 2293
[23] Han Q, Liu J, Zhang D B, and Wang Z D 2014 Chin. Phys. Lett. 31 057401
[24] Wang P J, Yu Z Q, Fu Z, Miao J, Huang L H, Chai S J, Zhai H, and Zhang J 2012 Phys. Rev. Lett. 109 095301
[25] Lin Y J, Compton R L, Jimenez-Garcia K, Porto J V, and Spielman I B 2009 Nature 462 628
[26] Dalibard J, Gerbier F, Juzeliunas G, and Ohberg P 2011 Rev. Mod. Phys. 83 1523
[27] Eckardt A 2017 Rev. Mod. Phys. 89 011004
[28] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
[29] Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V, and Spielman I B 2009 Phys. Rev. Lett. 102 130401
[30] Sato M and Fujimoto S 2016 J. Phys. Soc. Jpn. 85 072001
[31] Kitaev A Y 2001 Phys.-Usp. 44 131
[32] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[33] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[34] Hasan M Z and Moore J E 2011 Annu. Rev. Condens. Matter Phys. 2 55
[35] Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003
[36] Ozawa T and Stringari S 2014 Phys. Rev. Lett. 112 025302
[37] Hadzibabic Z, Kruger P, Cheneau M, Battelier B, and Dalibard J 2006 Nature 441 1118
[38] Fletcher R J, Robert-de-Saint-Vincent M, Man J, Navon N, Smith R P, Viebahn K G, and Hadzibabic Z 2015 Phys. Rev. Lett. 114 255302
[39] Murthy P, Boettcher I, Bayha L, Holzmann M, Kedar D, Neidig M, Ries M, Wenz A, Zürn G, and Jochim S 2015 Phys. Rev. Lett. 115 010401
[40] Feng X J and Yin L 2020 Chin. Phys. B 29 110306
[41] Lin Y J, Jimenez-Garcia K, and Spielman I B 2011 Nature 471 83
[42] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[43] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, and Pan J W 2016 Science 354 83
[44] Meng Z, Huang L, Peng P, Li D, Chen L, Xu Y, Zhang C, Wang P, and Zhang J 2016 Phys. Rev. Lett. 117 235304
[45] Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, and Zhang J 2016 Nat. Phys. 12 540
[46] Inouye S, Andrews M, Stenger J, Miesner H J, Stamper-Kurn D M, and Ketterle W 1998 Nature 392 151
[47] DeMarco B and Jin D S 1999 Science 285 1703
[48] Truscott A G, Strecker K E, McAlexander W I, Partridge G B, and Hulet R G 2001 Science 291 2570
[49] Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H, and Ketterle W 2005 Nature 435 1047
[50] Zhang J, Hu H, Liu X J, and Pu H 2014 Annual Review of Cold Atoms and Molecules (Singapore: World Scientific) pp 81–143
[51] Wang P J and Zhang J 2014 Front. Phys. 9 598
[52] Wang J B, Pan J S, Cui X, and Yi W 2020 Chin. Phys. Lett. 37 076701
[53] Zhang C, Tewari S, Lutchyn R M, and Sarma S D 2008 Phys. Rev. Lett. 101 160401
[54] Sá de Melo Carlos A R 2008 Phys. Today 61 45
[55] Holland M, Kokkelmans S, Chiofalo M L, and Walser R 2001 Phys. Rev. Lett. 87 120406
[56] Chen Y, Zhang K Z, Wang X L, and Chen Y 2014 Chin. Phys. Lett. 31 030301
[57] Bedaque P F, Caldas H, and Rupak G 2003 Phys. Rev. Lett. 91 247002
[58] Nayak C, Simon S H, Stern A, Freedman M, and Sarma S D 2008 Rev. Mod. Phys. 80 1083
Related articles from Frontiers Journals
[1] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 127402
[2] Jiang Hong Man, Ze Cheng. Cooper Molecules: Second Pairing of Cooper Pairs in Gapless Superconductor CeCoIn$_5$[J]. Chin. Phys. Lett., 2019, 36(10): 127402
[3] R. Szczęśniak, D. Szczęśniak. Energy Gap and Electron Effective Mass in Chlorine Halide Superconductor at High Pressure[J]. Chin. Phys. Lett., 2014, 31(11): 127402
[4] CAO Yu-Fei, CAI Kai-Ming, LI Li-Jun, LU Wen-Jian, SUN Yu-Ping, WANG Kai-You. Transport and Capacitance Properties of Charge Density Wave in Few-Layer 2H–TaS2 Devices[J]. Chin. Phys. Lett., 2014, 31(07): 127402
[5] HAN Qiang, LIU Jia, ZHANG Dan-Bo, WANG Zi-Dan. An Exotic Type of Fulde–Ferrel–Larkin–Ovchinnikov States in Spin-Orbit Coupled Condensates[J]. Chin. Phys. Lett., 2014, 31(05): 127402
[6] FAN Wei, WANG Jiang-Long, ZOU Liang-Jian, ZENG Zhi. Non-Adiabatic Effects of Superconductor Silane under High Pressure[J]. Chin. Phys. Lett., 2010, 27(8): 127402
[7] FAN Wei. Anti-Correlation between Energy-Gap and Phonon Energy for Cuprate Bi2212 Superconductor[J]. Chin. Phys. Lett., 2008, 25(6): 127402
[8] LIU Su, SHEN Rui, ZHENG Zhi-Ming, XING Ding-Yu. Incompatibility of d-Wave Pairing and Ferromagnetism in a Uniform System[J]. Chin. Phys. Lett., 2003, 20(2): 127402
[9] YIN Dao-Le, YANG Fan, QI Zhi, HAN Ru-Shan. Electron-Phonon Coupling in Anion Metallic Solids and Superconducting MgB2[J]. Chin. Phys. Lett., 2002, 19(8): 127402
[10] CHEN Zhi-Qian, ZHENG Ren-Rong,. Statistic Ensemble Theory of Small Superconducting Grains[J]. Chin. Phys. Lett., 2001, 18(4): 127402
[11] CHEN Zhi-Qian, ZHENG Ren-Rong,. Breakdown of Superconductivity in Small Metallic Grains[J]. Chin. Phys. Lett., 2000, 17(10): 127402
[12] CHEN Xiao-jia, GONG Chang-de. Pressure-Induced Charge Transfer and Pressure Dependence of the Superconducting Transition Temperature in HgBa2CuO4+δ[J]. Chin. Phys. Lett., 1998, 15(9): 127402
[13] SHI Da-ning. Van Hove Scenario in Two-Layer BCS Model[J]. Chin. Phys. Lett., 1996, 13(1): 127402
[14] LIU Fusui. HIGH Tc SUPERCONDUCTIVITY ENHANCED BY ANTIFERROMAGNETISM[J]. Chin. Phys. Lett., 1989, 6(10): 127402
[15] D. Szczęśniak, R. Szczęśniak. Thermodynamics of the CaLi2 Superconductor in the Vicinity of Structural Phase Transition[J]. Chin. Phys. Lett., 2014, 31(08): 127402
Viewed
Full text


Abstract