CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Observation of Enhanced Faraday Effect in Eu-Doped Ce:YIG Thin Films |
Han-Xu Zhang1, Sen-Yin Zhu1, Jin Zhan1, Xian-Jie Wang1, Yi Wang1, Tai Yao2, N. I. Mezin3, and Bo Song1,2,4,5* |
1School of Physics, Harbin Institute of Technology, Harbin 150001, China 2National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China 3A.A. Galkin Donetsk Institute for Physics and Engineering, Rosa Luxemburg Str. 72, 83114 Donetsk, Ukraine 4Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China 5Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin 150001, China
|
|
Cite this article: |
Han-Xu Zhang, Sen-Yin Zhu, Jin Zhan et al 2023 Chin. Phys. Lett. 40 127801 |
|
|
Abstract Ce:YIG thin films are taken as an ideal candidate for magneto-optical devices with giant Faraday effect in the near-infrared range, but it is hindered by a limited Ce$^{3+}$/Ce$^{4+}$ ratio and a high saturation driving field. To address this issue, Eu doping can increase the Faraday rotation angle by $\sim$ 40% to $1.315\times 10^{4}$ deg/cm and decrease the saturation driving field by $\sim$ 38% to 1.17 kOe in Eu$_{0.75}$Ce$_{1}$Y$_{1.25}$Fe$_{5}$O$_{12}$ compared to Ce$_{1}$Y$_{2}$Fe$_{5}$O$_{12}$ pristine. The mechanism is attributed to the conversion of Ce$^{4+}$ to Ce$^{3+}$ and the weakening of ferrimagnetism by Eu doping. This work not only provides strategies for improving Ce$^{3+}$/Ce$^{4+}$ ratio in Ce:YIG, but also develops (Eu,Ce):YIG with a promising Faraday rotation angle for magneto-optical devices.
|
|
Received: 05 September 2023
Published: 22 November 2023
|
|
PACS: |
78.20.Ls
|
(Magneto-optical effects)
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
|
|
|
[1] | Shintaku T, Uno T, and Kobayashi M 1993 J. Appl. Phys. 74 4877 |
[2] | Dotsch H, Bahlmann N, Zhuromskyy O, Hammer M, Wilkens L, Gerhardt R, Hertel P, and Popkov A F 2005 J. Opt. Soc. Am. B 22 240 |
[3] | Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C, and Ross C A 2011 Nat. Photonics 5 758 |
[4] | Shirasaki M, Takamatsu H, and Obokata T 1982 Appl. Opt. 21 1943 |
[5] | Dillon J F 1958 J. Appl. Phys. 3 539 |
[6] | Sekijima T, Kishimoto H, Fujii T, Wakino K, and Okada M 1999 Jpn. J. Appl. Phys. 38 5874 |
[7] | Srinivasan K and Stadler B J H 2022 Opt. Mater. Express 12 697 |
[8] | Gomi M, Satoh K, and Abe M 1988 Jpn. J. Appl. Phys. 27 1536 |
[9] | Chern M Y and Liaw J S 1997 Jpn. J. Appl. Phys. 36 1049 |
[10] | Yang Q, Zhang H, and Liu Y 2006 Rare Met. 25 557 |
[11] | Hao J X, Yang Q H, Zhang H W, Wen Q Y, Bai F M, Zhong Z Y, Jia L J, Ma B, and Wu Y J 2018 Acta Phys. Sin. 67 177801 (in Chinese) |
[12] | Zhang Y, Wang C T, Liang X, Peng B, Lu H P, Zhou P H, Zhang L, Xie J X, Deng L J, Zahradnik M, Beran L, Kucera M, Veis M, Ross C A, and Bi L 2017 J. Alloys Compd. 703 591 |
[13] | Yang Q H, Zhnag H W, Wen Q Y, Liu Y L, Syvorotka I M, and Syvorotka I I 2009 Chin. Phys. Lett. 26 047401 |
[14] | Chin J Y, Steinle T, Wehlus T, Dregely D, Weiss T, Belotelov V I, Stritzker B, and Giessen H 2013 Nat. Commun. 4 1599 |
[15] | Krichevsky D M, Xia S, Mandrik M P, Ignatyeva D O, Bi L, and Belotelov V I 2021 Nanomaterials 11 2926 |
[16] | Belotelov V I, Akimov I A, Pohl M, Kotov V A, Kasture S, Vengurlekar A S, Gopal A V, Yakovlev D R, Zvezdin A K, and Bayer M 2011 Nat. Nanotechnol. 6 370 |
[17] | Zhang W W, Lu Y, and An K 2023 J. Opt. 25 25402 |
[18] | Sadeghi A and Ghanaatshoar M 2023 Opt. Commun. 534 129311 |
[19] | Liang J C, Li Y, Dai T, Zhang Y J, Zhang X W, Liu H J, and Wang P J 2023 Opt. Express 31 8375 |
[20] | Jin Z R, Zhou H J, Zhang X D, Cao K, and Chen R 2023 ACS Mater. Lett. 5 803 |
[21] | Dongquoc V, Kuchi R, Van P C, Yoon S, and Jeong J 2018 Curr. Appl. Phys. 18 241 |
[22] | Onbasli M C, Beran L, Zahradnik M, Kucera M, Antos R, Mistrik J, Dionne G F, Veis M, and Ross C A 2016 Sci. Rep. 6 23640 |
[23] | Gomi M, Furuyama H, and Abe M 1991 J. Appl. Phys. 70 7065 |
[24] | Liang X, Xie J L, Deng L J, and Bi L 2015 Appl. Phys. Lett. 106 52401 |
[25] | Golkari M, Shokrollahi H, and Yang H 2020 Ceram. Int. 46 8553 |
[26] | Huang M and Zhang S Y 2002 Appl. Phys. A 74 177 |
[27] | Lage E, Beran L, Quindeau A U, Ohnoutek L, Kucera M, Antos R, Sani S R, Dionne G F, Veis M, and Ross C A 2017 APL Mater. 5 36104 |
[28] | Wu C N, Tseng C C, Lin K Y, Cheng C K, Yeh S L, Fanchiang Y T, Hong M, and Kwo J 2018 AIP Adv. 8 55904 |
[29] | Bezrkovnyi O S, Vorokhta M, Małecka M, Mista W, and Kepinski L 2020 Catal. Commun. 135 105875 |
[30] | Cao T, Chen G, Lue W, Zhou H, Li J, Zhu Z, You Z, Wang Y, and Tu C 2009 J. Non-Cryst. Solids 355 2361 |
[31] | Zhou H, Zhang T, Hao Y, Xu H, and Wang H 2010 Spectrosc. Spect. Anal. 30 2326 (in Chinese) |
[32] | Kehlberger A, Richter K, Onbasli M C, Jakob G, Kim D H, Goto T, Ross C A, Goetz G, Reiss G, Kuschel T, and Klaeui M 2015 Phys. Rev. Appl. 4 14008 |
[33] | Schmidt G, Hauser C, Trempler P, Paleschke M, and Papaioannou E T 2020 Phys. Status Solidi B 257 1900644 |
[34] | Douglass Jr D H, and Falicov L M 1964 Phys. Rev. B 5 344 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|