CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Pressure-Induced Superconductivity in the Charge-Density-Wave Compound LaTe$_{2- x}$Sb$_{x}$ ($x = 0$ and 0.4) |
Xu Chen1†, Pei-han Sun2†, Zhenkai Xie1,3†, Fanqi Meng1, Cuiying Pei4, Yanpeng Qi4,5,6, Tianping Ying1, Kai Liu2*, Jian-gang Guo1*, and Xiaolong Chen1,3* |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China 3University of Chinese Academy of Sciences, Beijing 100049, China 4School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 5ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China 6Shanghai Key Laboratory of High-resolution Electron Microscopy and ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
|
|
Cite this article: |
Xu Chen, Pei-han Sun, Zhenkai Xie et al 2023 Chin. Phys. Lett. 40 107402 |
|
|
Abstract Magnetic CeTe$_{2}$ achieving superconductivity under external pressure has received considerable attention. The intermingling of 4$f$ and 5$d$ electrons from Ce raised the speculation of an unconventional pairing mechanism arising from magnetic fluctuations. Here, we address this speculation using a nonmagnetic 4$f$-electron-free LaTe$_{2}$ as an example. No structural phase transition can be observed up to 35 GPa in the in situ synchrotron diffraction patterns. Subsequent high-pressure electrical measurements show that LaTe$_{2}$ exhibits superconductivity at 20 Gpa with its $T_{\rm c}$ (4.5 K) being two times higher than its Ce-counterpart. Detailed theoretical calculations reveal that charge transfer from the 4$p$ orbitals of the planar square Te–Te network to the 5$d$ orbitals of La is responsible for the emergence of superconductivity in LaTe$_{2}$, as confirmed by Hall experiments. Furthermore, we study the modulation of $q_{\scriptscriptstyle{\rm CDW}}$ by Sb substitution and find a record high $T_{\rm c}^{\rm onset} \sim 6.5$ K in LaTe$_{1.6}$Sb$_{0.4}$. Our work provides an informative clue to comprehend the role of $5d$–$4p$ hybridization in the relationship between charge density wave (CDW) and superconductivity in these RETe$_{2}$ (RE = rare-earth elements) compounds.
|
|
Received: 14 July 2023
Published: 11 October 2023
|
|
PACS: |
74.62.Fj
|
(Effects of pressure)
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
74.25.Dw
|
(Superconductivity phase diagrams)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
|
|
|
[1] | Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, and Schäfer H 1979 Phys. Rev. Lett. 43 1892 |
[2] | Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, and Lonzarich G G 1998 Nature 394 39 |
[3] | Thompson J D, Movshovich R, Fisk Z, Bouquet F, Curro N J, Fisher R A, Hammel P C, Hegger H, Hundley M F, Jaime M, Pagliuso P G, Petrovic P C N E, and Sarrao J L 2001 J. Magn. Magn. Mater. 226–230 5 |
[4] | Stöwe K 2000 J. Solid State Chem. 149 155 |
[5] | Jung M H, Min B H, Kwon Y S, Oguro I, Iga F, Fujita T, Ekino T, Kasuya T, and Takabatake T 2000 J. Phys. Soc. Jpn. 69 937 |
[6] | Jung M H, Alsmadi A, Kim H C, Bang Y, Ahn K H, Umeo K, Lacerda A H, Nakotte H, Ri H C, and Takabatake T 2003 Phys. Rev. B 67 212504 |
[7] | Park J G, Swainson I P, Buyers W J L, Jung M H, and Kwon Y S 1997 Physica B 241–243 684 |
[8] | Shim J H, Kang J S, and Min B I 2004 Phys. Rev. Lett. 93 156406 |
[9] | DiMasi E and Foran B 1996 Phys. Rev. B 54 13587 |
[10] | Kikuchi A 1998 J. Phys. Soc. Jpn. 67 1308 |
[11] | Shin K Y, Brouet V, Ru N, Shen Z X, and Fisher I R 2005 Phys. Rev. B 72 085132 |
[12] | Huang Y, Hu B F, Dong T, Fang A F, Zheng P, and Wang N L 2012 Phys. Rev. B 86 205123 |
[13] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, Gironcoli S D, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Samos L M, Marzari N, Mauri F, Mazzarello R, Paolini S, P, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umar P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502 |
[14] | Rappe A M, Rabe K M, Kaxiras E, and Joannopoulos J D 1990 Phys. Rev. B 41 1227 |
[15] | Dal Corso A 2014 Comput. Mater. Sci. 95 337 |
[16] | https://www.quantum-espresso.org/pseudopotentials |
[17] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[18] | Billeter S R, Curioni A, and Andreoni W 2003 Comput. Mater. Sci. 27 437 |
[19] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 |
[20] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[21] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[22] | Wang V, Xu N, Liu J C, Tang G, and Geng W T 2021 Comput. Phys. Commun. 267 108033 |
[23] | Kawamura M 2019 Comput. Phys. Commun. 239 197 |
[24] | Baroni S, de Gironcoli S, Dal Corso A, and Giannozzi P 2001 Rev. Mod. Phys. 73 515 |
[25] | Giustino F 2017 Rev. Mod. Phys. 89 015003 |
[26] | Birch F 1978 J. Geophys. Res.: Solid Earth 83 1257 |
[27] | Chi Z H, Chen X L, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C D, Chu S Q, Li Y C, Zhao J G, Kagayama T, Ma Y M, and Yang Z R 2018 Phys. Rev. Lett. 120 037002 |
[28] | Léger J M, Pereira A S, Haines J, Jobic S, and Brec R 2000 J. Phys. Chem. Solids 61 27 |
[29] | Clogston A M 1962 Phys. Rev. Lett. 9 266 |
[30] | Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, and Jin C Q 2020 Chin. Phys. Lett. 37 097404 |
[31] | Chen X, Zhan X H, Wang X J, Deng J, Liu X B, Chen X, Guo J G, and Chen X L 2021 Chin. Phys. Lett. 38 057402 |
[32] | Yang Y X, Fan W H, Zhang Q H, Chen Z X, Chen X, Ying T P, Wu X X, Yang X F, Meng F Q, Li G, Li S Y, Gu L, Qian T, Schnyder A P, Guo J G, and Chen X L 2021 Chin. Phys. Lett. 38 127102 |
[33] | Johannes M D and Mazin I I 2008 Phys. Rev. B 77 165135 |
[34] | Chen P, Pai W W, Chan Y H, Madhavan V, Chou M Y, Mo S K, Fedorov A V, and Chiang T C 2018 Phys. Rev. Lett. 121 196402 |
[35] | Clerc F, Battaglia C, Bovet M, Despont L, Monney C, Cercellier H, Garnier M G, Aebi P, Berger H, and Forró L 2006 Phys. Rev. B 74 155114 |
[36] | Matveenko S I 2009 Condens. Matter Theories 24 367 |
[37] | Calandra M and Mauri F 2011 Phys. Rev. Lett. 106 196406 |
[38] | Kiss T, Yokoya T, Chainani A, Shin S, Hanaguri T, Nohara M, and Takagi H 2007 Nat. Phys. 3 720 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|