Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 107402    DOI: 10.1088/0256-307X/40/10/107402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Pressure-Induced Superconductivity in the Charge-Density-Wave Compound LaTe$_{2- x}$Sb$_{x}$ ($x = 0$ and 0.4)
Xu Chen1†, Pei-han Sun2†, Zhenkai Xie1,3†, Fanqi Meng1, Cuiying Pei4, Yanpeng Qi4,5,6, Tianping Ying1, Kai Liu2*, Jian-gang Guo1*, and Xiaolong Chen1,3*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
5ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
6Shanghai Key Laboratory of High-resolution Electron Microscopy and ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
Cite this article:   
Xu Chen, Pei-han Sun, Zhenkai Xie et al  2023 Chin. Phys. Lett. 40 107402
Download: PDF(8695KB)   PDF(mobile)(9030KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetic CeTe$_{2}$ achieving superconductivity under external pressure has received considerable attention. The intermingling of 4$f$ and 5$d$ electrons from Ce raised the speculation of an unconventional pairing mechanism arising from magnetic fluctuations. Here, we address this speculation using a nonmagnetic 4$f$-electron-free LaTe$_{2}$ as an example. No structural phase transition can be observed up to 35 GPa in the in situ synchrotron diffraction patterns. Subsequent high-pressure electrical measurements show that LaTe$_{2}$ exhibits superconductivity at 20 Gpa with its $T_{\rm c}$ (4.5 K) being two times higher than its Ce-counterpart. Detailed theoretical calculations reveal that charge transfer from the 4$p$ orbitals of the planar square Te–Te network to the 5$d$ orbitals of La is responsible for the emergence of superconductivity in LaTe$_{2}$, as confirmed by Hall experiments. Furthermore, we study the modulation of $q_{\scriptscriptstyle{\rm CDW}}$ by Sb substitution and find a record high $T_{\rm c}^{\rm onset} \sim 6.5$ K in LaTe$_{1.6}$Sb$_{0.4}$. Our work provides an informative clue to comprehend the role of $5d$–$4p$ hybridization in the relationship between charge density wave (CDW) and superconductivity in these RETe$_{2}$ (RE = rare-earth elements) compounds.
Received: 14 July 2023      Published: 11 October 2023
PACS:  74.62.Fj (Effects of pressure)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
  74.25.Dw (Superconductivity phase diagrams)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/107402       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/107402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xu Chen
Pei-han Sun
Zhenkai Xie
Fanqi Meng
Cuiying Pei
Yanpeng Qi
Tianping Ying
Kai Liu
Jian-gang Guo
and Xiaolong Chen
[1] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, and Schäfer H 1979 Phys. Rev. Lett. 43 1892
[2] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, and Lonzarich G G 1998 Nature 394 39
[3] Thompson J D, Movshovich R, Fisk Z, Bouquet F, Curro N J, Fisher R A, Hammel P C, Hegger H, Hundley M F, Jaime M, Pagliuso P G, Petrovic P C N E, and Sarrao J L 2001 J. Magn. Magn. Mater. 226–230 5
[4] Stöwe K 2000 J. Solid State Chem. 149 155
[5] Jung M H, Min B H, Kwon Y S, Oguro I, Iga F, Fujita T, Ekino T, Kasuya T, and Takabatake T 2000 J. Phys. Soc. Jpn. 69 937
[6] Jung M H, Alsmadi A, Kim H C, Bang Y, Ahn K H, Umeo K, Lacerda A H, Nakotte H, Ri H C, and Takabatake T 2003 Phys. Rev. B 67 212504
[7] Park J G, Swainson I P, Buyers W J L, Jung M H, and Kwon Y S 1997 Physica B 241–243 684
[8] Shim J H, Kang J S, and Min B I 2004 Phys. Rev. Lett. 93 156406
[9] DiMasi E and Foran B 1996 Phys. Rev. B 54 13587
[10] Kikuchi A 1998 J. Phys. Soc. Jpn. 67 1308
[11] Shin K Y, Brouet V, Ru N, Shen Z X, and Fisher I R 2005 Phys. Rev. B 72 085132
[12] Huang Y, Hu B F, Dong T, Fang A F, Zheng P, and Wang N L 2012 Phys. Rev. B 86 205123
[13] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, Gironcoli S D, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Samos L M, Marzari N, Mauri F, Mazzarello R, Paolini S, P, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umar P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[14] Rappe A M, Rabe K M, Kaxiras E, and Joannopoulos J D 1990 Phys. Rev. B 41 1227
[15] Dal Corso A 2014 Comput. Mater. Sci. 95 337
[16]https://www.quantum-espresso.org/pseudopotentials
[17] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Billeter S R, Curioni A, and Andreoni W 2003 Comput. Mater. Sci. 27 437
[19] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[20] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[21] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[22] Wang V, Xu N, Liu J C, Tang G, and Geng W T 2021 Comput. Phys. Commun. 267 108033
[23] Kawamura M 2019 Comput. Phys. Commun. 239 197
[24] Baroni S, de Gironcoli S, Dal Corso A, and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[25] Giustino F 2017 Rev. Mod. Phys. 89 015003
[26] Birch F 1978 J. Geophys. Res.: Solid Earth 83 1257
[27] Chi Z H, Chen X L, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C D, Chu S Q, Li Y C, Zhao J G, Kagayama T, Ma Y M, and Yang Z R 2018 Phys. Rev. Lett. 120 037002
[28] Léger J M, Pereira A S, Haines J, Jobic S, and Brec R 2000 J. Phys. Chem. Solids 61 27
[29] Clogston A M 1962 Phys. Rev. Lett. 9 266
[30] Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, and Jin C Q 2020 Chin. Phys. Lett. 37 097404
[31] Chen X, Zhan X H, Wang X J, Deng J, Liu X B, Chen X, Guo J G, and Chen X L 2021 Chin. Phys. Lett. 38 057402
[32] Yang Y X, Fan W H, Zhang Q H, Chen Z X, Chen X, Ying T P, Wu X X, Yang X F, Meng F Q, Li G, Li S Y, Gu L, Qian T, Schnyder A P, Guo J G, and Chen X L 2021 Chin. Phys. Lett. 38 127102
[33] Johannes M D and Mazin I I 2008 Phys. Rev. B 77 165135
[34] Chen P, Pai W W, Chan Y H, Madhavan V, Chou M Y, Mo S K, Fedorov A V, and Chiang T C 2018 Phys. Rev. Lett. 121 196402
[35] Clerc F, Battaglia C, Bovet M, Despont L, Monney C, Cercellier H, Garnier M G, Aebi P, Berger H, and Forró L 2006 Phys. Rev. B 74 155114
[36] Matveenko S I 2009 Condens. Matter Theories 24 367
[37] Calandra M and Mauri F 2011 Phys. Rev. Lett. 106 196406
[38] Kiss T, Yokoya T, Chainani A, Shin S, Hanaguri T, Nohara M, and Takagi H 2007 Nat. Phys. 3 720
Related articles from Frontiers Journals
[1] Jun Hou, Peng-Tao Yang, Zi-Yi Liu, Jing-Yuan Li, Peng-Fei Shan, Liang Ma, Gang Wang, Ning-Ning Wang, Hai-Zhong Guo, Jian-Ping Sun, Yoshiya Uwatoko, Meng Wang, Guang-Ming Zhang, Bo-Sen Wang, and Jin-Guang Cheng. Emergence of High-Temperature Superconducting Phase in Pressurized La$_{3}$Ni$_{2}$O$_7$ Crystals[J]. Chin. Phys. Lett., 2023, 40(11): 107402
[2] Xin He, Changling Zhang, Zhiwen Li, Sijia Zhang, Shaomin Feng, Jianfa Zhao, Ke Lu, Baosen Min, Yi Peng, Xiancheng Wang, Jin Song, Luhong Wang, Saori I. Kawaguchi, Cheng Ji, Bing Li, Haozhe Liu, J. S. Tse, and Changqing Jin. Superconductivity above 30 K Achieved in Dense Scandium[J]. Chin. Phys. Lett., 2023, 40(10): 107402
[3] Jing Guo, Shu Cai, Dong Wang, Haiyun Shu, Liuxiang Yang, Pengyu Wang, Wentao Wang, Huanfang Tian, Huaixin Yang, Yazhou Zhou, Jinyu Zhao, Jinyu Han, Jianqi Li, Qi Wu, Yang Ding, Wenge Yang, Tao Xiang, Ho-kwang Mao, and Liling Sun. Robust Magnetism Against Pressure in Non-Superconducting Samples Prepared from Lutetium Foil and H$_{2}$/N$_{2}$ Gas Mixture[J]. Chin. Phys. Lett., 2023, 40(9): 107402
[4] Liang Ma, Lingrui Wang, Yifang Yuan, Haizhong Guo, and Hongbo Wang. High-Temperature Superconductivity in Doped Boron Clathrates[J]. Chin. Phys. Lett., 2023, 40(8): 107402
[5] X. He, C. L. Zhang, Z. W. Li, S. J. Zhang, B. S. Min, J. Zhang, K. Lu, J. F. Zhao, L. C. Shi, Y. Peng, X. C. Wang, S. M. Feng, J. Song, L. H. Wang, V. B. Prakapenka, S. Chariton, H. Z. Liu, and C. Q. Jin. Superconductivity Observed in Tantalum Polyhydride at High Pressure[J]. Chin. Phys. Lett., 2023, 40(5): 107402
[6] Yiding Liu, Qiang Fan, Jianhui Yang, Lili Wang, Weibin Zhang, and Gang Yao. Predicted High-Temperature Superconductivity in Rare Earth Hydride ErH$_{2}$ at Moderate Pressure[J]. Chin. Phys. Lett., 2022, 39(12): 107402
[7] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 107402
[8] Cong Liu, Junjie Wang, Xin Deng, Xiaomeng Wang, Chris J. Pickard, Ravit Helled, Zhongqing Wu, Hui-Tian Wang, Dingyu Xing, and Jian Sun. Partially Diffusive Helium-Silica Compound under High Pressure[J]. Chin. Phys. Lett., 2022, 39(7): 107402
[9] Peng-Tao Yang, Qing-Xin Dong, Peng-Fei Shan, Zi-Yi Liu, Jian-Ping Sun, Zhi-Ling Dun, Yoshiya Uwatoko, Gen-Fu Chen, Bo-Sen Wang, and Jin-Guang Cheng. Emergence of Superconductivity on the Border of Antiferromagnetic Order in RbMn$_{6}$Bi$_{5}$ under High Pressure: A New Family of Mn-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(6): 107402
[10] Xu Chen, Xinhui Zhan, Xiaojun Wang, Jun Deng, Xiao-Bing Liu, Xin Chen, Jian-Gang Guo, and Xiaolong Chen. Highly Robust Reentrant Superconductivity in CsV$_{3}$Sb$_{5}$ under Pressure[J]. Chin. Phys. Lett., 2021, 38(5): 107402
[11] Hai Zi, Ling-Xiao Zhao, Xing-Yuan Hou, Lei Shan, Zhian Ren, Gen-Fu Chen, and Cong Ren. Pressure-Dependent Point-Contact Spectroscopy of Superconducting PbTaSe$_2$ Single Crystals[J]. Chin. Phys. Lett., 2020, 37(9): 107402
[12] Ya-Ting Jia, Chun-Sheng Gong, Yi-Xuan Liu, Jian-Fa Zhao, Cheng Dong, Guang-Yang Dai, Xiao-Dong Li, He-Chang Lei, Run-Ze Yu, Guang-Ming Zhang, and Chang-Qing Jin. Mott Transition and Superconductivity in Quantum Spin Liquid Candidate NaYbSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 107402
[13] Jun Zhang, Mei-Ling Jin, Xiang Li, Xian-Cheng Wang, Jian-Fa Zhao, Ying Liu, Lei Duan, Wen-Min Li, Li-Peng Cao, Bi-Juan Chen, Li-Juan Wang, Fei Sun, Yong-Gang Wang, Liu-Xiang Yang, Yu-Ming Xiao, Zheng Deng, Shao-Min Feng, Chang-Qing Jin, and Jin-Long Zhu. Structure-Spin-Transport Anomaly in Quasi-One-Dimensional Ba$_{9}$Fe$_{3}$Te$_{15}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(8): 107402
[14] Yu-Lu Zheng , Liang Li, Fang-Fei Li , Qiang Zhou, and Tian Cui . Pressure-Dependent Phonon Scattering of Layered GaSe Prepared by Mechanical Exfoliation[J]. Chin. Phys. Lett., 2020, 37(8): 107402
[15] Zi-Yi Liu, Qing-Xin Dong, Peng-Fei Shan, Yi-Yan Wang, Jian-Hong Dai, Rajesh Jana, Ke-Yu Chen, Jian-Ping Sun, Bo-Sen Wang, Xiao-Hui Yu, Guang-Tong Liu, Yoshiya Uwatoko, Yu Sui, Huai-Xin Yang, Gen-Fu Chen, Jin-Guang Cheng. Pressure-Induced Metallization and Structural Phase Transition in the Quasi-One-Dimensional TlFeSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(4): 107402
Viewed
Full text


Abstract