CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Superconductivity above 30 K Achieved in Dense Scandium |
Xin He1,2,3†, Changling Zhang1,2†, Zhiwen Li1,2, Sijia Zhang1, Shaomin Feng1, Jianfa Zhao1,2, Ke Lu1,2, Baosen Min1,2, Yi Peng1,2, Xiancheng Wang1,2*, Jin Song1, Luhong Wang4, Saori I. Kawaguchi5, Cheng Ji6, Bing Li6, Haozhe Liu6, J. S. Tse7, and Changqing Jin1,2,3* |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4Shanghai Advanced Research in Physical Sciences, Shanghai 201203, China 5Japan Synchrotron Radiation Research Institute, SPring-8, Sayo-gun Hyogo 679-5198, Japan 6Center for High Pressure Science & Technology Advanced Research, Beijing 100094, China 7Department of Physics, University of Saskatchewan, Canada
|
|
Cite this article: |
Xin He, Changling Zhang, Zhiwen Li et al 2023 Chin. Phys. Lett. 40 107403 |
|
|
Abstract Superconductivity is one of most intriguing quantum phenomena, and the quest for elemental superconductors with high critical temperature ($T_{\rm c}$) is of great scientific significance due to their relatively simple material composition and the underlying mechanism. Here we report the experimental discovery of densely compressed scandium (Sc) becoming the first elemental superconductor with $T_{\rm c}$ breaking into 30 K range, which is comparable to the $T_{\rm c}$ values of the classic La–Ba–Cu–O or LaFeAsO superconductors. Our results show that $T_{\rm c}^{\rm onset}$ of Sc increases from $\sim$ $3$ K at around 43 GPa to $\sim$ $32$ K at about 283 GPa ($T_{\rm c}^{\rm zero} \sim 31$ K), which is well above liquid neon temperature. Interestingly, measured $T_{\rm c}$ shows no sign of saturation up to the maximum pressure achieved in our experiments, indicating that $T_{\rm c}$ may be even higher upon further compression.
|
|
Received: 26 August 2023
Express Letter
Published: 20 September 2023
|
|
|
|
|
|
[1] | Buzea C and Robbie K 2005 Supercond. Sci. Technol. 18 R1 |
[2] | Hamlin J J 2015 Physica C 514 59 |
[3] | Scanlan R M, Malozemoff A P, and Larbalestier D C 2004 Proc. IEEE 92 1639 |
[4] | Yabuuchi T, Matsuoka T, Nakamoto Y, and Shimizu K 2006 J. Phys. Soc. Jpn. 75 083703 |
[5] | Gregoryanz E, Struzhkin V V, Hemley R J, Eremets M I, Mao H K, and Timofeev Y A 2002 Phys. Rev. B 65 064504 |
[6] | Shimizu K, Ishikawa H, Takao D, Yagi T, and Amaya K 2002 Nature 419 597 |
[7] | Struzhkin V V, Eremets M I, Gan W, Mao H K, and Hemley R J 2002 Science 298 1213 |
[8] | Hamlin J J, Tissen V G, and Schilling J S 2007 Physica C 451 82 |
[9] | Zhang C L, He X, Liu C, Li Z W, Lu K, Zhang S J, Feng S M, Wang X C, Peng Y, Long Y W, Yu R C, Wang L H, Prakapenka V, Chariton S, Li Q, Liu H Z, Chen C F, and Jin C Q 2022 Nat. Commun. 13 5411 |
[10] | Olijnyk H and Holzapfel W B 1984 Phys. Lett. A 100 191 |
[11] | Akahama Y, Kawamura H, and Le B T 2002 J. Phys.: Condens. Matter 14 10583 |
[12] | Ahuja R, Dubrovinsky L, Dubrovinskaia N, Guillen J M O, Mattesini M, Johansson B, and Le B T 2004 Phys. Rev. B 69 184102 |
[13] | Oganov A R, Ma Y, Xu Y, Errea I, Bergara A, and Lyakhov A O 2010 Proc. Natl. Acad. Sci. USA 107 7646 |
[14] | Liu X Q, Jiang P, Wang Y M, Li M T, Li N N, Zhang Q, Wang Y D, Li Y L, and Yang W G 2022 Phys. Rev. B 105 224511 |
[15] | Vohra Y K, Grosshans W, and Holzapfel W B 1982 Phys. Rev. B 25 6019 |
[16] | Zhao Y C, Porsch F, and Holzapfel W B 1996 Phys. Rev. B 54 9715 |
[17] | Akahama Y, Fujihisa H, and Kawamura H 2005 Phys. Rev. Lett. 94 195503 |
[18] | Fujihisa H, Akahama Y, Kawamura H, Gotoh Y, Yamawaki H, Sakashita M, Takeya S, and Honda K 2005 Phys. Rev. B 72 132103 |
[19] | Zhu S C, Yan X Z, Fredericks S, Li Y L, and Zhu Q 2018 Phys. Rev. B 98 214116 |
[20] | Debessai M, Hamlin J J, and Schilling J S 2008 Phys. Rev. B 78 064519 |
[21] | Wittig J, Probst C, Schmidt F A, and Gschneidner K A 1979 Phys. Rev. Lett. 42 469 |
[22] | Hamlin J J and Schilling J S 2007 Phys. Rev. B 76 012505 |
[23] | Arapan S, Skorodumova N V, and Ahuja R 2009 Phys. Rev. Lett. 102 085701 |
[24] | Tsuppayakorn-aek P, Luo W, Pungtrakoon W, Chuenkingkeaw K, Kaewmaraya T, Ahuja R, and Bovornratanaraks T 2018 J. Appl. Phys. 124 225901 |
[25] | Li Z W, He X, Zhang C L, Wang X C, Zhang S J, Jia Y T, Feng S M, Lu K, Zhao J F, Zhang J, Min B S, Long Y W, Yu R C, Wang L H, Ye M Y, Zhang Z S, Prakapenka V, Chariton S, Ginsberg P A, Bass J, Yuan S H, Liu H Z, and Jin C Q 2022 Nat. Commun. 13 2863 |
[26] | Jia Y T, He X, Feng S M, Zhang S J, Zhang C L, Ren C W, Wang X C, and Jin C Q 2020 Crystals 10 1116 |
[27] | Zhang C L, He X, Li Z W, Zhang S J, Feng S M, Wang X C, Yu R C, and Jin C Q 2022 Sci. Bull. 67 907 |
[28] | Zhang C L, He X, Li Z W, Zhang S J, Min B S, Zhang J, Lu K, Zhao J F, Shi L C, Peng Y, Wang X C, Feng S M, Yu R C, Wang L H, Prakapenka V B, Chariton S, Liu H Z, and Jin C Q 2022 Mater. Today Phys. 27 100826 |
[29] | Ishizuka M, Iketani M, and Endo S 2000 Phys. Rev. B 61 R3823 |
[30] | Chu C W, Hor P H, Meng R L, Gao L, Huang Z J, and Wang Y Q 1987 Phys. Rev. Lett. 58 405 |
[31] | Kamihara Y, Watanabe T, Hirano M, and Hosono H 2008 J. Am. Chem. Soc. 130 3296 |
[32] | Ying J J, Liu S Q, Lu Q, Wen X K, Gui Z G, Zhang Y Q, Wang X M, Sun J, and Chen X H 2023 Phys. Rev. Lett. 130 256002 |
[33] | te Velde G and Baerends E J 1991 Phys. Rev. B 44 7888 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|