CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Coexistence of Zero-Dimensional Electride State and Superconductivity in AlH$_{2}$ Monolayer |
Qiuping Yang, Xue Jiang*, and Jijun Zhao* |
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024, China |
|
Cite this article: |
Qiuping Yang, Xue Jiang, and Jijun Zhao 2023 Chin. Phys. Lett. 40 107401 |
|
|
Abstract Electrides, which confine “excess anionic electrons” in subnanometer-sized cavities of a lattice, are exotic ionic crystals. We propose a non-stoichiometric strategy to realize intrinsic two-dimensional (2D) superconducting electride. AlH$_{2}$ monolayer, which is structurally identical to 1H-MoS$_{2}$, possesses zero-dimensionally confined anionic electrons in the interstitial sites of Al triangles, corresponding to a chemical formula of [AlH$_{2}$]$^{+}e^{-}$. The interaction between interstitial anionic electrons (IAEs) and host cation lattice mainly accounts for stabilization of 1H-AlH$_{2}$ electride. Impressively, 1H-AlH$_{2}$ monolayer is an intrinsic Bardeen–Cooper–Schrieffer superconductor with $T_{\rm c}=38$ K, which is the direct consequence of strong coupling of the H-dominated high electronic states with Al acoustic branch vibrations and mid-frequency H-derived phonon softening modes caused by Kohn anomalies. Under tensile strain, IAEs transform into itinerant electrons, favoring the formation of stable Cooper pairs. Therefore, $T_{\rm c}$ reaches up to 53 K at a biaxial fracture strain of 5%. Our findings provide valuable insights into the correlation between non-stoichiometric electrides and superconducting microscopic mechanisms at the 2D limit.
|
|
Received: 08 August 2023
Express Letter
Published: 13 September 2023
|
|
PACS: |
74.20.Pq
|
(Electronic structure calculations)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
74.25.Ld
|
(Mechanical and acoustical properties, elasticity, and ultrasonic Attenuation)
|
|
74.78-w
|
|
|
|
|
|
[1] | Dye J L 2003 Science 301 607 |
[2] | Dye J L 1993 Nature 365 10 |
[3] | Li Z Y, Yang J L, Hou J G, and Zhu Q S 2003 J. Am. Chem. Soc. 125 6050 |
[4] | Hosono H and Kitano M 2021 Chem. Rev. 121 3121 |
[5] | Zhong X, Xu M L, Yang L L, Qu X, Yang L H, Zhang M, Liu H Y, and Ma Y M 2018 npj Comput. Mater. 4 70 |
[6] | Wang J J, Zhu Q, Wang Z H, and Hosono H 2019 Phys. Rev. B 99 064104 |
[7] | Wang J J, Hanzawa K, Hiramatsu H, Kim J, Umezawa N, Iwanaka K, Tada T, and Hosono H 2017 J. Am. Chem. Soc. 139 15668 |
[8] | Zhang Y Q, Xiao Z W, Kamiya T, and Hosono H 2015 J. Phys. Chem. Lett. 6 4966 |
[9] | Tada T, Takemoto S, Matsuishi S, and Hosono H 2014 Inorg. Chem. 53 10347 |
[10] | Ming W M, Yoon M, Du M H, Lee K, and Kim S W 2016 J. Am. Chem. Soc. 138 15336 |
[11] | Tsuji Y, Dasari P L V K, Elatresh S F, Hoffmann R, and Ashcroft N W 2016 J. Am. Chem. Soc. 138 14108 |
[12] | Zhang Y W, Wang H, Wang Y C, Zhang L J, and Ma Y M 2017 Phys. Rev. X 7 011017 |
[13] | Dye J L 1997 Inorg. Chem. 36 3816 |
[14] | Dawes S B, Ward D L, Huang R H, and Dye J L 1986 J. Am. Chem. Soc. 108 3534 |
[15] | Matsuishi S, Toda Y, Miyakawa M, Hayashi K, Kamiya T, Hirano M, Tanaka I, and Hosono H 2003 Science 301 626 |
[16] | Miyakawa M, Kim S W, Hirano M, Kohama Y, Kawaji H, Atake T, Ikegami H, Kono K, and Hosono H 2007 J. Am. Chem. Soc. 129 7270 |
[17] | Toda Y, Matsuishi S, Hayashi K, Ueda K, Kamiya T, Hirano M, and Hosono H 2004 Adv. Mater. 16 685 |
[18] | Lee K, Kim S W, Toda Y, Matsuishi S, and Hosono H 2013 Nature 494 336 |
[19] | Zhang Y Q, Wang B S, Xiao Z W, Lu Y F, Kamiya T, Uwatoko Y, Kageyama H, and Hosono H 2017 npj Quantum Mater. 2 45 |
[20] | Lv B, Zhu X Y, Lorenz B, Wei F Y, Xue Y Y, Yin Z P, Kotliar G, and Chu C W 2013 Phys. Rev. B 88 134520 |
[21] | Pereira Z S, Faccin G M, and da Silva E Z 2021 J. Phys. Chem. C 125 8899 |
[22] | Wan Z Y, Zhang C, Yang T Y, Xu W J, and Zhang R Q 2022 New J. Phys. 24 113012 |
[23] | Zhao Z Y, Zhang S T, Yu T, Xu H Y, Bergara A, and Yang G C 2019 Phys. Rev. Lett. 122 97002 |
[24] | Zhang X H, Yao Y S, Ding S C, Bergara A, Li F, Liu Y, Zhou X F, and Yang G C 2023 Phys. Rev. B 107 L100501 |
[25] | Gallop J and Hao L 2016 ACS Nano 10 8128 |
[26] | de Franceschi S, Kouwenhoven L, Schönenberger C and Wernsdorfer W 2010 Nat. Nanotechnol. 5 703 |
[27] | Huefner M, May C, Kičin S, Ensslin K, Ihn T, Hilke M, Suter K, de Rooij N F, and Staufer U 2009 Phys. Rev. B 79 134530 |
[28] | Ge Y F, Guan S, and Liu Y 2017 New J. Phys. 19 123020 |
[29] | Zeng X Z, Zhao S T, Li Z Y, and Yang J L 2018 Phys. Rev. B 98 155443 |
[30] | Qiu X L, Zhang J F, Yang H C, Lu Z Y, and Liu K 2022 Phys. Rev. B 105 165101 |
[31] | Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, and Shylin S I 2015 Nature 525 73 |
[32] | Duan D F, Liu Y X, Tian F B, Li D, Huang X L, Zhao Z L, Yu H Y, Liu B B, Tian W J, and Cui T 2014 Sci. Rep. 4 6968 |
[33] | Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W, and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990 |
[34] | Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, and Eremets M I 2019 Nature 569 528 |
[35] | Pickard C J and Needs R J 2010 Nat. Mater. 9 624 |
[36] | Nakashima P N H, Smith A E, Etheridge J, and Muddle B C 2011 Science 331 1583 |
[37] | Gubser D U and Webb A W 1975 Phys. Rev. Lett. 35 104 |
[38] | Ataca C and Ciraci S 2011 J. Phys. Chem. C 115 13303 |
[39] | Sun M L and Schwingenschlögl U 2020 Chem. Mater. 32 4795 |
[40] | Guan J, Zhu Z, and Tománek D 2014 Phys. Rev. Lett. 113 46804 |
[41] | Yan X, Ding S C, Zhang X H, Bergara A, Liu Y, Wang Y, Zhou X F, and Yang G 2022 Phys. Rev. B 106 14514 |
[42] | Kittel C 1976 Introduction to Solid State Physics (New York: Wiley) |
[43] | Brower F M, Matzek N E, Reigler P F, Rinn H W, Roberts C B, Schmidt D L, Snover J A, and Terada K 1976 J. Am. Chem. Soc. 98 2450 |
[44] | Henkelman G, Arnaldsson A, and Jónsson H 2006 Comput. Mater. Sci. 36 354 |
[45] | Zhang X, Xiao Z, Lei H, Toda Y, Matsuishi S, Kamiya T, Ueda S, and Hosono H 2014 Chem. Mater. 26 6638 |
[46] | Dilmi S, Saib S, and Bouarissa N 2018 Curr. Appl. Phys. 18 1338 |
[47] | Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H F, Yang G, Zhang L, and Ma Y 2016 Phys. Rev. Lett. 116 57002 |
[48] | Margine E R and Giustino F 2014 Phys. Rev. B 90 14518 |
[49] | Han Y L, Li Y P, Yang L, Liu H D, Jiao N, Wang B T, Lu H Y, and Zhang P 2023 Mater. Today Phys. 30 100954 |
[50] | Jiménez Sandoval S, Yang D, Frindt R F, and Irwin J C 1991 Phys. Rev. B 44 3955 |
[51] | Wang X M, Wang Y, Wang J J, Pan S N, Lu Q, Wang H T, Xing D, and Sun J 2022 Phys. Rev. Lett. 129 246403 |
[52] | Zhang X H, Li F, Bergara A, and Yang G C 2021 Phys. Rev. B 104 134505 |
[53] | Wang Q, Cui W, Gao K, Chen J, Gu T, Liu M, Hao J, Shi J, and Li Y 2022 Phys. Rev. B 106 54519 |
[54] | McMillan W L 1968 Phys. Rev. 167 331 |
[55] | Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 |
[56] | Carbotte J P 1990 Rev. Mod. Phys. 62 1027 |
[57] | Oliveira L N, Gross E K U, and Kohn W 1988 Phys. Rev. Lett. 60 2430 |
[58] | Migdal A B 1968 Sov. Phys.-JETP 35 996 |
[59] | Eliashberg G M 1960 Sov. Phys.-JETP 38 966 |
[60] | Liu P F, Zheng F P, Li J Y, Si J G, Wei L M, Zhang J R, and Wang B T 2022 Phys. Rev. B 105 245420 |
[61] | Choi H J, Roundy D, Sun H, Cohen M L, and Louie S G 2002 Nature 418 758 |
[62] | An Y P, Li J, Wang K, Wang G T, Gong S J, Ma C L, Wang T X, Jiao Z Y, Dong X, Xu G L, Wu R Q, and Liu W M 2021 Phys. Rev. B 104 134510 |
[63] | Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, and Feng D L 2014 Nat. Commun. 5 5044 |
[64] | Qi Y P, Sadi M A, Hu D, Zheng M, Wu Z P, Jiang Y C, and Chen Y P 2023 Adv. Mater. 35 2205714 |
[65] | Si C, Liu Z, Duan W H, and Liu F 2013 Phys. Rev. Lett. 111 196802 |
[66] | Xiao R C, Shao D F, Lu W J, Lv H Y, Li J Y, and Sun Y P 2016 Appl. Phys. Lett. 109 122604 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|